

About	the	Authors
Cem	Ünsalan,	Ph.D.,	established	the	DSP	Laboratory	at	Yeditepe	University

in	Istanbul,	Turkey,	and	is	a	microprocessor	and	digital	signal	processing
professor	there.	He	is	the	coauthor	of	Programmable	Microcontrollers	with
Applications:	MSP430	LaunchPad	with	CCS	and	Grace.

Bora	Tar,	Ph.D.,	is	a	postdoctoral	researcher	at	The	Ohio	State	University.
His	main	research	interests	include	analog	and	mixed-signal	integrated-circuit
design	and	energy	harvesting	and	sensor	networking	applications.

Copyright	©	2017	by	McGraw-Hill	Education.	All	rights	reserved.	Except	as
permitted	under	the	United	States	Copyright	Act	of	1976,	no	part	of	this
publication	may	be	reproduced	or	distributed	in	any	form	or	by	any	means,	or
stored	in	a	database	or	retrieval	system,	without	the	prior	written	permission	of
the	publisher.
ISBN:	978-1-25-983791-3

MHID:	1-25-983791-2.
The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:

978-1-25983790-6,	MHID:	1-25-9837904.
eBook	conversion	by	codeMantra

Version	1.0
All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a

trademark	symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names
in	an	editorial	fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no
intention	of	infringement	of	the	trademark.	Where	such	designations	appear	in
this	book,	they	have	been	printed	with	initial	caps.
McGraw-Hill	Education	eBooks	are	available	at	special	quantity	discounts	to

use	as	premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.
To	contact	a	representative,	please	visit	the	Contact	Us	page	at
www.mhprofessional.com.
Information	contained	in	this	work	has	been	obtained	by	McGraw-Hill

Education	from	sources	believed	to	be	reliable.	However,	neither	McGraw-Hill
Education	nor	its	authors	guarantee	the	accuracy	or	completeness	of	any
information	published	herein,	and	neither	McGraw-Hill	Education	nor	its
authors	shall	be	responsible	for	any	errors,	omissions,	or	damages	arising	out	of
use	of	this	information.	This	work	is	published	with	the	understanding	that
McGraw-Hill	Education	and	its	authors	are	supplying	information	but	are	not
attempting	to	render	engineering	or	other	professional	services.	If	such	services
are	required,	the	assistance	of	an	appropriate	professional	should	be	sought.
TERMS	OF	USE
This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors

reserve	all	rights	in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.
Except	as	permitted	under	the	Copyright	Act	of	1976	and	the	right	to	store	and
retrieve	one	copy	of	the	work,	you	may	not	decompile,	disassemble,	reverse
engineer,	reproduce,	modify,	create	derivative	works	based	upon,	transmit,

http://www.mhprofessional.com

engineer,	reproduce,	modify,	create	derivative	works	based	upon,	transmit,
distribute,	disseminate,	sell,	publish	or	sublicense	the	work	or	any	part	of	it
without	McGraw-Hill	Education’s	prior	consent.	You	may	use	the	work	for	your
own	noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly
prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply
with	these	terms.
THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND

ITS	LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO
THE	ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS
TO	BE	OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY
INFORMATION	THAT	CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA
HYPERLINK	OR	OTHERWISE,	AND	EXPRESSLY	DISCLAIM	ANY
WARRANTY,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED
TO	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	OR	FITNESS	FOR
A	PARTICULAR	PURPOSE.	McGraw-Hill	Education	and	its	licensors	do	not
warrant	or	guarantee	that	the	functions	contained	in	the	work	will	meet	your
requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.	Neither
McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any
damages	resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for
the	content	of	any	information	accessed	through	the	work.	Under	no
circumstances	shall	McGraw-Hill	Education	and/or	its	licensors	be	liable	for	any
indirect,	incidental,	special,	punitive,	consequential	or	similar	damages	that
result	from	the	use	of	or	inability	to	use	the	work,	even	if	any	of	them	has	been
advised	of	the	possibility	of	such	damages.	This	limitation	of	liability	shall	apply
to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises	in	contract,
tort	or	otherwise.

Contents

Preface
Acknowledgments

1			Introduction
1.1	Hardware	Description	Languages
1.2	FPGA	Boards	and	Software	Tools
1.3	Topics	to	Be	Covered	in	the	Book

2			Field-Programmable	Gate	Arrays
2.1	A	Brief	Introduction	to	Digital	Electronics

2.1.1	Bit	Values	as	Voltage	Levels
2.1.2	Transistor	as	a	Switch
2.1.3	Logic	Gates	from	Switches

2.2	FPGA	Building	Blocks
2.2.1	Layout	of	the	Xilinx	Artix-7	XC7A35T	FPGA
2.2.2	Input/Output	Blocks
2.2.3	Configurable	Logic	Blocks
2.2.4	Interconnect	Resources
2.2.5	Block	RAM
2.2.6	DSP	Slices
2.2.7	Clock	Management
2.2.8	The	XADC	Block
2.2.9	High-Speed	Serial	I/O	Transceivers
2.2.10	Peripheral	Component	Interconnect	Express
Interface

2.3	FPGA-Based	Digital	System	Design	Philosophy
2.3.1	How	to	Think	While	Using	FPGAs
2.3.2	Advantages	and	Disadvantages	of	FPGAs

2.4	Usage	Areas	of	FPGAs

2.5	Summary
2.6	Exercises

3			Basys3	and	Arty	FPGA	Boards
3.1	The	Basys3	Board

3.1.1	Powering	the	Board
3.1.2	Input/Output
3.1.3	Configuring	the	FPGA
3.1.4	Advanced	Connectors
3.1.5	External	Memory
3.1.6	Oscillator/Clock

3.2	The	Arty	Board
3.2.1	Powering	the	Board
3.2.2	Input/Output
3.2.3	Configuring	the	FPGA
3.2.4	Advanced	Connectors
3.2.5	External	Memory
3.2.6	Oscillator/Clock

3.3	Summary
3.4	Exercises

4			The	Vivado	Design	Suite
4.1	Installation	and	the	Welcome	Screen
4.2	Creating	a	New	Project

4.2.1	Adding	a	Verilog	File
4.2.2	Adding	a	VHDL	File

4.3	Synthesizing	the	Project
4.4	Simulating	the	Project

4.4.1	Adding	a	Verilog	Testbench	File
4.4.2	Adding	a	VHDL	Testbench	File

4.5	Implementing	the	Synthesized	Project
4.6	Programming	the	FPGA

4.6.1	Adding	the	Basys3	Board	Constraint	File	to	the
Project
4.6.2	Programming	the	FPGA	on	the	Basys3	Board
4.6.3	Adding	the	Arty	Board	Constraint	File	to	the
Project

4.6.4	Programming	the	FPGA	on	the	Arty	Board
4.7	Vivado	Design	Suite	IP	Management

4.7.1	Existing	IP	Blocks	in	Vivado
4.7.2	Generating	a	Custom	IP

4.8	Application	on	the	Vivado	Design	Suite
4.9	Summary
4.10	Exercises

5			Introduction	to	Verilog	and	VHDL
5.1	Verilog	Fundamentals

5.1.1	Module	Representation
5.1.2	Timing	and	Delays	in	Modeling
5.1.3	Hierarchical	Module	Representation

5.2	Testbench	Formation	in	Verilog
5.2.1	Structure	of	a	Verilog	Testbench	File
5.2.2	Displaying	Test	Results

5.3	VHDL	Fundamentals
5.3.1	Entity	and	Architecture	Representations
5.3.2	Dataflow	Modeling
5.3.3	Behavioral	Modeling
5.3.4	Timing	and	Delays	in	Modeling
5.3.5	Hierarchical	Structural	Representation

5.4	Testbench	Formation	in	VHDL
5.4.1	Structure	of	a	VHDL	Testbench	File
5.4.2	Displaying	Test	Results

5.5	Adding	an	Existing	IP	to	the	Project
5.5.1	Adding	an	Existing	IP	in	Verilog
5.5.2	Adding	an	Existing	IP	in	VHDL

5.6	Summary
5.7	Exercises

6			Data	Types	and	Operators
6.1	Number	Representations

6.1.1	Binary	Numbers
6.1.2	Octal	Numbers
6.1.3	Hexadecimal	Numbers

6.2	Negative	Numbers

6.2.1	Signed	Bit	Representation
6.2.2	One’s	Complement	Representation
6.2.3	Two’s	Complement	Representation

6.3	Fixed-and	Floating-Point	Representations
6.3.1	Fixed-Point	Representation
6.3.2	Floating-Point	Representation

6.4	ASCII	Code
6.5	Arithmetic	Operations	on	Binary	Numbers

6.5.1	Addition
6.5.2	Subtraction
6.5.3	Multiplication
6.5.4	Division

6.6	Data	Types	in	Verilog
6.6.1	Net	and	Variable	Data	Types
6.6.2	Data	Values
6.6.3	Naming	a	Net	or	Variable
6.6.4	Defining	Constants	and	Parameters
6.6.5	Defining	Vectors

6.7	Operators	in	Verilog
6.7.1	Arithmetic	Operators
6.7.2	Concatenation	and	Replication	Operators

6.8	Data	Types	in	VHDL
6.8.1	Signal	and	Variable	Data	Types
6.8.2	Data	Values
6.8.3	Naming	a	Signal	or	Variable
6.8.4	Defining	Constants
6.8.5	Defining	Arrays

6.9	Operators	in	VHDL
6.9.1	Arithmetic	Operators
6.9.2	Concatenation	Operator

6.10	Application	on	Data	Types	and	Operators
6.11	FPGA	Building	Blocks	Used	in	Data	Types	and	Operators

6.11.1	Implementation	Details	of	Vector	Operations
6.11.2	Implementation	Details	of	Arithmetic	Operations

6.12	Summary
6.13	Exercises

7			Combinational	Circuits
7.1	Basic	Definitions

7.1.1	Binary	Variable
7.1.2	Logic	Function
7.1.3	Truth	Table

7.2	Logic	Gates
7.2.1	The	NOT	Gate
7.2.2	The	OR	Gate
7.2.3	The	AND	Gate
7.2.4	The	XOR	Gate

7.3	Combinational	Circuit	Analysis
7.3.1	Logic	Function	Formation	between	Input	and
Output
7.3.2	Boolean	Algebra
7.3.3	Gate-Level	Minimization

7.4	Combinational	Circuit	Implementation
7.4.1	Truth	Table-Based	Implementation
7.4.2	Implementing	One-Input	Combinational	Circuits
7.4.3	Implementing	Two-Input	Combinational	Circuits
7.4.4	Implementing	Three-Input	Combinational	Circuits

7.5	Combinational	Circuit	Design
7.5.1	Analyzing	the	Problem	to	Be	Solved
7.5.2	Selecting	a	Solution	Method
7.5.3	Implementing	the	Solution

7.6	Sample	Designs
7.6.1	Home	Alarm	System
7.6.2	Digital	Safe	System
7.6.3	Car	Park	Occupied	Slot	Counting	System

7.7	Applications	on	Combinational	Circuits
7.7.1	Implementing	the	Home	Alarm	System
7.7.2	Implementing	the	Digital	Safe	System
7.7.3	Implementing	the	Car	Park	Occupied	Slot
Counting	System

7.8	FPGA	Building	Blocks	Used	in	Combinational	Circuits
7.9	Summary
7.10	Exercises

8			Combinational	Circuit	Blocks
8.1	Adders

8.1.1	Half	Adder
8.1.2	Full	Adder
8.1.3	Adders	in	Verilog
8.1.4	Adders	in	VHD

8.2	Comparators
8.2.1	Comparators	in	Verilog
8.2.2	Comparators	in	VHDL

8.3	Decoders
8.3.1	Decoders	in	Verilog
8.3.2	Decoders	in	VHDL

8.4	Encoders
8.4.1	Encoders	in	Verilog
8.4.2	Encoders	in	VHDL

8.5	Multiplexers
8.5.1	Multiplexers	in	Verilog
8.5.2	Multiplexers	in	VHDL

8.6	Parity	Generators	and	Checkers
8.6.1	Parity	Generators
8.6.2	Parity	Checkers
8.6.3	Parity	Generators	and	Checkers	in	Verilog
8.6.4	Parity	Generators	and	Checkers	in	VHDL

8.7	Applications	on	Combinational	Circuit	Blocks
8.7.1	Improving	the	Calculator
8.7.2	Improving	the	Home	Alarm	System
8.7.3	Improving	the	Car	Park	Occupied	Slot	Counting
System

8.8	FPGA	Building	Blocks	Used	in	Combinational	Circuit	Blocks
8.9	Summary
8.10	Exercises

9			Data	Storage	Elements
9.1	Latches

9.1.1	SR	Latch
9.1.2	D	Latch
9.1.3	Latches	in	Verilog

9.1.4	Latches	in	VHDL
9.2	Flip-Flops

9.2.1	D	Flip-Flop
9.2.2	JK	Flip-Flop
9.2.3	T	Flip-Flop
9.2.4	Flip-Flops	in	Verilog
9.2.5	Flip-Flops	in	VHDL

9.3	Register
9.4	Memory
9.5	Read-Only	Memory

9.5.1	ROM	in	Verilog
9.5.2	ROM	in	VHDL
9.5.3	ROM	Formation	Using	IP	Blocks

9.6	Random	Access	Memory
9.7	Application	on	Data	Storage	Elements
9.8	FPGA	Building	Blocks	Used	in	Data	Storage	Elements
9.9	Summary
9.10	Exercises

10			Sequential	Circuits
10.1	Sequential	Circuit	Analysis

10.1.1	Definition	of	State
10.1.2	State	and	Output	Equations
10.1.3	State	Table
10.1.4	State	Diagram
10.1.5	State	Representation	in	Verilog
10.1.6	State	Representation	in	VHDL

10.2	Timing	in	Sequential	Circuits
10.2.1	Synchronous	Operation
10.2.2	Asynchronous	Operation

10.3	Shift	Register	as	a	Sequential	Circuit
10.3.1	Shift	Registers	in	Verilog
10.3.2	Shift	Registers	in	VHDL
10.3.3	Multiplication	and	Division	Using	Shift
Registers

10.4	Counter	as	a	Sequential	Circuit
10.4.1	Synchronous	Counter

10.4.2	Asynchronous	Counter
10.4.3	Counters	in	Verilog
10.4.4	Counters	in	VHDL
10.4.5	Frequency	Division	Using	Counters

10.5	Sequential	Circuit	Design
10.6	Applications	on	Sequential	Circuits

10.6.1	Improving	the	Home	Alarm	System
10.6.2	Improving	the	Digital	Safe	System
10.6.3	Improving	the	Car	Park	Occupied	Slot	Counting
System
10.6.4	Vending	Machine
10.6.5	Digital	Clock

10.7	FPGA	Building	Blocks	Used	in	Sequential	Circuits
10.8	Summary
10.9	Exercises

11			Embedding	a	Soft-Core	Microcontroller
11.1	Building	Blocks	of	a	Generic	Microcontroller

11.1.1	Central	Processing	Unit
11.1.2	Arithmetic	Logic	Unit
11.1.3	Memory
11.1.4	Oscillator/Clock
11.1.5	General	Purpose	Input/Output
11.1.6	Other	Blocks

11.2	Xilinx	PicoBlaze	Microcontroller
11.2.1	Functional	Blocks	of	PicoBlaze
11.2.2	PicoBlaze	in	Verilog
11.2.3	PicoBlaze	in	VHDL
11.2.4	PicoBlaze	Application	on	the	Basys3	Board

11.3	Xilinx	MicroBlaze	Microcontroller
11.3.1	MicroBlaze	as	an	IP	Block	in	Vivado
11.3.2	MicroBlaze	MCS	Application	on	the	Basys3
Board

11.4	Soft-Core	Microcontroller	Applications
11.5	FPGA	Building	Blocks	Used	in	Soft-Core	Microcontrollers
11.6	Summary
11.7	Exercises

12			Digital	Interfacing
12.1	Universal	Asynchronous	Receiver/Transmitter

12.1.1	Working	Principles	of	UART
12.1.2	UART	in	Verilog
12.1.3	UART	in	VHDL
12.1.4	UART	Applications

12.2	Serial	Peripheral	Interface
12.2.1	Working	Principles	of	SPI
12.2.2	SPI	in	Verilog
12.2.3	SPI	in	VHDL
12.2.4	SPI	Application

12.3	Inter-Integrated	Circuit
12.3.1	Working	Principles	of	I2C
12.3.2	I2C	in	Verilog
12.3.3	I2C	in	VHDL
12.3.4	I2C	Application

12.4	Video	Graphics	Array
12.4.1	Working	Principles	of	VGA
12.4.2	VGA	in	Verilog
12.4.3	VGA	in	VHDL
12.4.4	VGA	Application

12.5	Universal	Serial	Bus
12.5.1	USB-Receiving	Module	in	Verilog
12.5.2	USB-Receiving	Module	in	VHDL
12.5.3	USB	Keyboard	Application

12.6	Ethernet
12.7	FPGA	Building	Blocks	Used	in	Digital	Interfacing
12.8	Summary
12.9	Exercises

13			Advanced	Applications
13.1	Integrated	Logic	Analyzer	IP	Core	Usage
13.2	The	XADC	Block	Usage
13.3	Adding	Two	Floating-Point	Numbers
13.4	Calculator
13.5	Home	Alarm	System
13.6	Digital	Safe	System

13.7	Car	Park	Occupied	Slot	Counting	System
13.8	Vending	Machine
13.9	Digital	Clock
13.10	Moving	Wave	via	LEDs
13.11	Translator
13.12	Air	Freshener	Dispenser
13.13	Obstacle-Avoiding	Tank
13.14	Intelligent	Washing	Machine
13.15	Non-Touch	Paper	Towel	Dispenser
13.16	Traffic	Lights
13.17	Car	Parking	Sensor	System
13.18	Body	Weight	Scale
13.19	Intelligent	Billboard
13.20	Elevator	Cabin	Control	System
13.21	Digital	Table	Tennis	Game
13.22	Customer	Counter
13.23	Frequency	Meter
13.24	Pedometer

14			What	Is	Next?
14.1	Vivado	High-Level	Synthesis	Platform
14.2	Developing	a	Project	in	Vivado	HLS	to	Generate	IP
14.3	Using	the	Generated	IP	in	Vivado
14.4	Summary
14.5	Exercises

References
Index

Preface

The	world	around	us	has	become	digital.	Personal	devices	we	use,	houses	we
live	in,	and	cars	we	drive	contain	digital	systems	to	simplify	life	for	us.
Moreover,	all	these	systems	have	started	communicating	with	each	other.	Since
digital	systems	have	become	one	of	the	most	important	tools	of	our	daily	lives,
besides	engineers	hobbyists	have	also	started	learning	and	using	them.
There	are	four	ways	to	realize	a	digital	system.	The	first	one	is	using	discrete

logicgates.	This	approach	has	become	obsolete	due	to	implementation	issues.
The	secon	dway	is	using	a	microcontroller,	which	has	very	desirable	properties
such	as	ease	of	programming	and	price.	However,	a	microcontroller	is	static	in
terms	of	its	configuration.	The	third	one	is	using	an	application-specific
integrated	circuit	(ASIC).	For	mass	production,	using	ASICs	is	the	solution.
However,	producing	and	testing	an	ASIC	chip	needs	time,	which	limits	its
modification	after	it	is	designed.	The	fourth	way	is	using	a	field-programmable
gate	array	(FPGA).	An	FPGA	can	be	configured	easily	such	that	it	can	be
tailored	for	a	specific	application.
Managing	an	FPGA	and	getting	the	best	out	of	it	are	slightly	harder	than	for	a

microcontroller.	However,	if	done	appropriately	the	benefit	will	be	enormous.
Therefore,	this	book	aims	to	guide	the	reader	to	mastering	FPGAs	through
digital	system	design.	While	doing	this,	the	main	focus	will	be	on
implementation.	Hence,	the	reader	will	grasp	theoretical	digital	design	concepts
via	implementing	real-life	applications.	For	this	purpose,	we	pick	two	recent
boards:	Basys3	and	Arty.	Both	boards	have	a	Xilinx	Artix-7	FPGA	on	them.
Baysy3	has	most	of	the	required	peripherals	onboard.	Hence,	it	is	an	excellent
candidate	for	being	used	in	digital	design	education.	Arty	has	Arduino-
compatible	pins.	Since	Arduino	is	widely	accepted	as	a	microcontroller	platform
by	hobbyists,	it	has	a	wide	range	of	peripheral	devices	as	shields.	Arty	allows	us
to	benefit	from	these.	Moreover,	the	hobbyist	can	switch	from	Arduino	to	Arty
when	a	custom-made	digital	design	is	required.	Throughout	the	book,	we	will
provide	practical	application	examples	mostly	on	the	Basys3	board	due	to	its
available	resources	onboard.	However,	these	applications	can	be	modified	to
work	on	the	Arty	board	as	well.	Besides,	we	will	use	simulation	for	almost	all
applications.	Hence,	buying	Basy3	or	Arty	is	not	a	must	to	follow	the	book.
There	are	two	popular	hardware	description	languages	(HDLs)	used	to

There	are	two	popular	hardware	description	languages	(HDLs)	used	to
implement	a	digital	system	on	an	FPGA.	These	are	Verilog	and	VHDL.	Each
HDL	has	its	advantages	and	disadvantages.	Throughout	the	book,	we	will	cover
both	HDLs	in	parallel.	This	will	allow	readers	to	choose	the	HDL	he	or	she
likes.	Note	that	this	is	not	a	book	on	advanced	Verilog	or	VHDL.	We	will	focus
only	on	important	and	necessary	topics.	This	way,	we	expect	the	beginner	or
hobbyist	to	benefit	from	the	book.
Before	diving	into	the	fascinating	world	of	digital	systems,	we	would	like	to

remind	the	reader	of	one	or	two	things.	We	did	not	intend	to	write	a	standard
textbook	for	a	digital	design	course.	Therefore,	we	did	not	cover	theoretical
concepts	in	depth.	Instead,	we	tried	to	explain	all	these	concepts	using	real-life
applications.	This	way,	we	hope	the	reader	will	grasp	digital	design	concepts
better.	Moreover,	we	do	not	believe	digital	design	is	just	a	mandatory
engineering	course	to	be	attended.	It	is	a	talent	every	engineering	student	should
gain	for	the	job	market.	Besides,	it	is	fun	to	play	with,	as	done	by	most
hobbyists.	So,	let’s	enjoy	digital	design	with	the	FPGA	while	mastering	it.

Cem	Ünsalan
Bora	Tar

Acknowledgments

We	would	like	to	thank	Cathal	McCabe	from	Xilinx	for	his	guidance	and
valuable	comments.	We	would	also	like	to	thank	Digilent	Inc.	for	allowing	us	to
use	Basys3	and	Arty	board	images	and	sample	projects.
Artix	is	a	trademark	of	Xilinx	Inc.	Vivado	Design	Suite	is	a	trademark	of

Xilinx	Inc.	Basys3	is	a	trademark	of	Digilent	Inc.	Arty	is	a	trademark	of	Avnet
and	Digilent	Inc.

CHAPTER	1

Introduction

The	world	around	us	has	become	digital.	Hence,	digital	systems	have
become	the	dominant	part	of	our	lives.	Although	most	of	us	enjoy	benefits
offered	by	digital	systems,	it	is	the	duty	of	a	candidate	engineer	to	learn	how	to
design	and	analyze	them.	Besides,	digital	design	concepts	have	become	topics	of
interest	to	a	hobbyist	and	the	maker	community	due	to	their	power	in
implementing	systems.	Therefore,	we	aim	to	introduce	digital	system	design
techniques	throughout	this	book.
Although	there	are	several	ways	to	implement	a	digital	system,	we	will	focus

only	on	implementation	by	field-programmable	gate	arrays	(FPGAs)	in	this
book.	FPGA	can	be	taken	as	a	generic	platform	such	that	a	digital	system	can	be
implemented	on	it.	Recently,	the	price	of	a	standard	FPGA	chip	has	become
affordable.	Moreover,	evaluation	boards	using	such	chips	became	widespread.
Hence,	a	hobbyist	or	an	engineering	student	can	implement	his	or	her	design	on
such	a	platform.	The	only	requirement	left	is	how	to	do	it.	This	book	aims	to	fill
this	gap.	Therefore,	we	will	guide	the	reader	through	the	complex	paths	of
FPGA	usage	for	digital	design.	In	doing	this,	we	aim	for	an	introductory
approach	to	form	a	background	that	may	open	up	ways	to	understand	more
advanced	FPGA	topics.

1.1	Hardware	Description	Languages
There	are	two	popular	hardware	description	languages	(HDLs)	to	implement	a

digital	system	design	on	an	FPGA.	These	are	Verilog	and	VHDL.	In	literature,	it
is	clearly	emphasized	that	learning	one	HDL	simplifies	learning	the	other.
Moreover,	it	is	indicated	that	learning	both	HDLs	is	important	to	become	an
expert	in	this	discipline.	However,	most	books	on	digital	design	pick	either
Verilog	or	VHDL	alone	and	explain	the	concepts	using	it.	There	is	only	a	small
group	of	books	introducing	both	HDLs	together.	We	prefer	this	strategy	in	this
book.	However,	we	suggest	the	reader	to	master	one	HDL	first	(possibly
Verilog).	Then,	he	or	she	can	revisit	the	book	to	understand	the	second	HDL
(possibly	VHDL).	This	way,	the	same	digital	system	design	concepts	will	be

(possibly	VHDL).	This	way,	the	same	digital	system	design	concepts	will	be
revisited	twice.	Hence,	we	expect	repetition	to	make	perfection.
We	should	warn	the	reader	at	this	step.	This	is	not	a	comprehensive	book	on

Verilog	or	VHDL.	Such	a	target	is	beyond	our	reach.	However,	we	aim	to
introduce	digital	system	design	techniques	using	HDLs.	Therefore,	we	cover
HDL	concepts	falling	in	this	area.	In	doing	this,	we	provide	practical
applications.	Afterward,	the	reader	can	consult	comprehensive	books	to	master
his	or	her	knowledge	on	advanced	HDL	topics.

1.2	FPGA	Boards	and	Software	Tools
Throughout	the	book,	we	will	approach	digital	design	concepts	from	a

practical	point	of	view.	Hence,	we	need	appropriate	hardware	and	software
platforms.	Fortunately,	there	are	several	FPGA	boards	under	different	brands
with	various	properties.	In	this	book,	we	pick	two	such	boards:	Basys3	and	Arty.
Both	boards	have	a	Xilinx	Artix-7
FPGA	on	them.	Basys3	has	most	digital	peripherals	on	it.	Therefore,	it	is

suitable	for	education	purposes.	On	the	other	hand,	Arty	has	Arduino	compatible
pins	such	that	Arduino	shields	can	be	used	with	it.	Therefore,	it	is	suitable	for
hobbyists	and	the	maker	community.	Throughout	the	book,	we	will	provide
practical	application	examples	mostly	on	the	Basys3	board	due	to	its	available
resources	onboard.	However,	these	applications	can	be	modified	to	work	on	the
Arty	board	as	well.	Note	that	Basys3	and	Arty	boards	have	differences	that	are
explored	in	detail	in	Chap.	3.	In	applications	where	such	differences	matter,	it	is
advisable	to	use	the	suitable	board.
We	will	use	simulation	tools	while	explaining	digital	system	design	concepts.

Therefore,	this	book	can	also	be	of	use	without	any	FPGA	board	at	hand.	In	the
same	line,	most	concepts	to	be	explained	throughout	the	book	do	not	depend	on
a	specific	FPGA	platform.	Hence,	a	different	FPGA	platform	can	also	be	used	to
implement	them.	However,	there	are	some	concepts	that	require	a	specific	FPGA
platform.	For	these,	minor	modifications	should	be	made	by	the	reader	for
implementation.	Bearing	this	in	mind,	we	should	also	mention	the	software	to	be
used	throughout	the	book.	We	will	use	the	Vivado	design	suite	to	implement	the
designed	digital	system	on	the	Xilinx	Artix-7	FPGA.	This	design	suite	is
supported	by	Xilinx.	As	of	the	writing	of	this	book,	Vivado	was	available	from
Xilinx’s	website	free	of	charge.

1.3	Topics	to	Be	Covered	in	the	Book
An	FPGA	is	itself	a	digital	electronic	system.	Therefore,	first	we	have	to

introduce	the	basic	digital	electronics	background.	The	second	chapter	of	the
book	handles	this.	However,	digital	system	concepts	will	be	explained	briefly	in
this	chapter.	They	will	be	analyzed	in	detail	in	the	following	chapters.	The	third
chapter	of	the	book	explores	properties	of	Basys3	and	Arty	boards.	Here,	the	aim
is	getting	familiar	with	physical	hardware	to	be	used	throughout	the	book.
Related	to	this,	the	fourth	chapter	introduces	the	Vivado	design	suite.	Hence,	the
reader	gets	familiar	with	digital	design	implementation	issues.	The	first	four
chapters	can	be	taken	as	preparatory	steps	for	digital	system	implementation.
Starting	from	the	fifth	chapter,	HDL	concepts	will	be	the	main	focus	of	interest.
Therefore,	Chap.	5	introduces	Verilog	and	VHDL.	Then,	the	sixth	chapter	deals
with	data	types	and	operators	on	these.	The	reader	should	remember	these
concepts	since	they	will	be	extremely	useful	in	the	following	chapters.	Chapters
5	and	6	can	also	be	taken	as	preparatory	steps	for	digital	system	implementation
on	FPGA	via	HDL.	Based	on	these,	the	seventh	chapter	focuses	on
combinational	circuits.	Here,	HDL	will	be	used	to	implement	basic
combinational	circuits.	The	eighth	chapter	extends	these	concepts	further	such
that	more	complex	digital	systems	can	be	constructed	via	HDL.	The	ninth
chapter	is	on	data	storage	elements	that	are	extensively	used	in	constructing
sequential	circuits.	As	a	follow-up,	the	tenth	chapter	introduces	sequential
circuits.	Here,	standard	sequential	digital	systems	such	as	counters	and	registers
are	evaluated.	Therefore,	Chaps.	7	to	10	can	be	taken	as	the	building	blocks	of	a
generic	digital	system	such	as	a	microcontroller.	The	eleventh	chapter	introduces
methods	to	embed	a	soft-core	microcontroller	on	FPGA.	Chapter	12	focuses	on
digital	interfacing	tools.	Here,	HDL	implementation	details	of	recent	digital
communication	and	interfacing	methods	are	summarized.	In	all	these	chapters,
we	provide	relevant	real-life	applications.	However,	some	applications	may
cover	more	than	one	topic.	Therefore,	Chap.	13	provides	such	advanced
applications	using	FPGA.	Finally,	Chap.	14	provides	the	path	to	be	followed	to
learn	more	advanced	topics	on	FPGA.
Sample	Verilog	and	VHDL	descriptions	in	this	book	and	related	testbench

files	are	available	for	the	reader	on	a	companion	website,
www.mhprofessional.com/1259837904.	For	some	real-life	applications,	we
could	not	include	VHDL	descriptions	in	the	book	due	to	page	limitations.
However,	these	are	available	on	the	companion	website,	and	we	kindly	ask	the
reader	to	download	them.	Course	slides	for	the	reader	and	instructor	and	the
solution	manual	for	the	instructor	are	also	available	on	this	website.

http://www.mhprofessional.com/1259837904

CHAPTER	2

Field-Programmable	Gate	Arrays

The	aim	of	this	book	is	explaining	field-programmable	gate	array	(FPGA)
usage	for	digital	system	implementation.	Naturally,	the	first	step	in	doing	this	is
explaining	what	an	FPGA	is.	An	FPGA	is	itself	a	digital	system	composed	of
basic	building	blocks.	Therefore,	some	digital	logic	background	is	necessary	to
understand	the	FPGA	architecture.	To	do	so,	we	adopt	the	following	strategy	in
this	book.	We	start	with	the	basics	of	digital	electronics	in	this	chapter.	Then,	we
explain	the	architecture	of	an	FPGA	using	abstract	building	blocks.	As	we
overview	the	FPGA	architecture	in	this	chapter,	we	focus	on	the	digital	system
design	and	implementation	philosophy	using	the	FPGA	next.	Finally,	we
summarize	the	usage	areas	of	the	FPGA	to	motivate	the	reader.

2.1	A	Brief	Introduction	to	Digital	Electronics
There	are	two	main	approaches	in	explaining	digital	systems.	The	first	one

starts	with	digital	electronic	representation	and	ends	up	with	it.	Here,	all
concepts	are	explained	in	transistor	level.	Although	this	approach	is	reasonable,
it	is	not	suitable	for	us	since	the	reader	does	not	need	such	a	detailed	explanation
to	use	an	FPGA.	The	second	approach	is	not	mentioning	any	hardware
representation	and	explaining	all	concepts	using	binary	representation	and
Boolean	algebra.	This	approach	is	more	refined	and	allows	a	more	theoretical
background.	Unfortunately,	it	does	not	invoke	physical	device	properties	for
implementation.	Hence,	all	concepts	will	be	in	abstract	level.	We	believe	that	a
third	approach,	mixing	digital	device	representation	with	abstract	formalism,
may	be	more	helpful	to	the	reader.	Therefore,	we	briefly	introduce	digital
electronics	in	this	chapter.	In	the	following	chapters,	we	will	not	represent	digital
devices	this	way.	However,	we	expect	the	reader	to	recall	physical
representations	mentioned	in	this	chapter.

2.1.1	Bit	Values	as	Voltage	Levels
All	digital	devices	are	based	on	binary	representation.	In	other	words,

All	digital	devices	are	based	on	binary	representation.	In	other	words,
everything	in	a	digital	device	is	represented	in	terms	of	two	logic	levels	as	zero
and	one.	At	first,	this	may	seem	unreasonable.	How	is	it	possible	to	represent
data	processing	in	all	complex	digital	devices	(including	computers,	tablets,
smart	phones,	etc.)	in	terms	of	zeros	and	ones?	Well,	this	is	the	case.	Throughout
the	book,	we	will	try	to	convince	the	reader	that	all	complex	digital	systems	are
composed	of	basic	building	blocks	working	on	binary	logic	levels.	Moreover,	we
will	show	that	most	parts	of	these	devices	can	be	implemented	on	an	FPGA.
Next	comes	the	second	question.	How	is	a	binary	digit	(or	a	bit,	in	short)

represented	in	a	digital	device?	The	answer	to	this	question	leads	to
understanding	digital	logic	concepts	in	the	physical	level.	In	its	basic	sense,	we
have	two	voltage	levels	to	represent	a	binary	digit	(either	as	zero	or	one).	Let’s
call	these	ground	(zero)	and	supply	voltage	(VCC).	These	correspond	to	binary
logic	levels	zero	and	one,	respectively.	Therefore,	whenever	we	talk	about	a	bit
value	as	zero	or	one,	we	actually	mean	a	voltage	level	as	either	ground	or	supply
voltage.

2.1.2	Transistor	as	a	Switch
A	digital	circuit	can	be	constructed	by	transistors.	A	transistor	is	an	active

circuit	element	used	either	as	an	amplifier	or	a	digital	switch.	The	latter	property
is	extremely	important,	since	all	binary	logic	operations	can	be	performed	this
way.	Instead	of	dealing	with	physical	properties	of	a	transistor,	we	can	simplify
its	characteristics	as	follows.
Assume	that	there	is	a	digital	switch	controlled	by	voltage	Vin.	When	there	is

no	voltage	applied	to	the	switch,	it	acts	as	an	open	circuit.	In	other	words,	the
switch	does	not	pass	current	on	it	as	in	Fig.	2.1a.	Based	on	this	setup,	we	can	say
that	when	Vin	=	0,	output	voltage	of	the	circuit	will	be	Vout	=	0.	When	the
voltage	VCC	is	applied	to	the	switch,	it	acts	as	a	short	circuit.	Therefore,	the
switch	passes	current	on	it	as	in	Fig.	2.1b.	Based	on	this	setup,	we	can	say	that
when	Vin	=	VCC	output	voltage	of	the	circuit	will	be	Vout	=	VCC.	These	two
characteristics	will	lead	to	logic	gates.	Note	that	R	represents	the	resistor	in	Fig.
2.1	to	limit	current	in	the	circuit.

FIGURE	2.1	Abstract	representation	of	a	transistor	working	as	a	switch.

2.1.3	Logic	Gates	from	Switches
As	mentioned	in	the	previous	section,	by	applying	a	suitable	voltage	level	to

the	switch,	the	current	(hence	output	voltage)	can	be	controlled.	This	leads	to	the
development	of	digital	logic	gates.	Before	exploring	logic	gates,	let’s	start	with
the	buffer.

2.1.3.1	The	Buffer
The	buffer	can	be	taken	as	a	logic	gate	which	feeds	its	input	to	output	without

changing	it.	Therefore,	it	does	not	perform	any	logical	operation.	However,	the
buffer	is	extremely	important	in	input/output	ports	of	digital	devices	to	minimize
voltage	loading	effects	between	different	elements.	In	other	words,	the	buffer
acts	as	a	protective	shield.	We	will	see	this	usage	extensively	in	the	input/output
ports	of	an	FPGA	implementation	in	the	following	chapters.	We	can	represent
the	buffer	in	symbolic	form	as	in	Fig.	2.2.	In	this	figure,	in=out.

FIGURE	2.2	The	buffer	symbol.

2.1.3.2	The	NOT	Gate
The	NOT	gate	can	be	constructed	by	a	switch	with	two	input	pins	as	in	Fig.

2.3.	In	this	setup,	when	input	is	equal	to	supply	voltage	(Vin	=	VCC)	the	switch
connects	ground	to	output.	Hence,	output	voltage	will	be	zero	(Vout	=	0).	When
input	voltage	equals	to	ground	(Vin	=	0),	the	switch	connects	supply	voltage	to
output.	Hence,	Vout	=	VCC.

FIGURE	2.3	The	NOT	gate	formed	by	a	switch.

Now,	let’s	represent	VCC	as	logic	level	one	and	ground	as	logic	level	zero.
Furthermore,	let’s	call	Vin	as	in	and	Vout	as	out.	Based	on	these	simplifications,
we	can	summarize	working	principle	of	the	NOT	gate	as	follows:

As	can	be	seen	in	Eq.	(2.1),	the	NOT	gate	is	a	simple	inverter	in	terms	of
binary	logic.	When	a	logic	level	zero	is	applied	to	its	input,	output	will	be	logic
level	one.	When	a	logic	level	one	is	applied	to	input	of	the	NOT	gate,	output	will
be	zero.
We	can	represent	the	NOT	gate	in	symbolic	form	as	in	Fig.	2.4.	In	this	figure,

in	and	out	values	are	the	ones	in	Eq.	(2.1).	Hence,	the	relation	between	them	is
satisfied	with	this	equation.

FIGURE	2.4	The	NOT	gate	symbol.

2.1.3.3	The	OR	Gate
The	OR	is	the	next	logic	gate	to	be	considered.	This	gate	can	be	constructed

by	two	switches	connected	in	parallel	as	in	Fig.	2.5.	In	this	setup,	when	either
the	first	or	the	second	input	is	equal	to	supply	voltage	(Vin1	=	VCC	or	Vin2	=	VCC),
output	equals	to	supply	voltage	as	well	(Vout	=	VCC).	For	all	other	cases,	output
voltage	equals	to	ground	(Vout	=	0).

FIGURE	2.5	The	OR	gate	formed	by	two	parallel	switches.

	
As	in	NOT	gate,	we	can	simplify	working	principle	of	the	OR	gate.	Let’s	call

Vin1	as	in1,	Vin2	as	in2,	and	Vout	as	out.	Based	on	these	simplifications,	we	can
summarize	working	principle	of	the	OR	gate	as	follows:

As	can	be	seen	in	Eq.	(2.2),	the	OR	gate	gives	logic	level	one	when	any	of	the
parallel	switches	has	input	logic	level	one.	Otherwise,	output	of	the	gate	will	be
logic	level	zero.
We	can	represent	the	OR	gate	in	symbolic	form	as	in	Fig.	2.6.	In	this	figure,

in1,	in2,	and	out	values	are	the	ones	in	Eq.	(2.2).	Hence,	the	relation	between
them	is	satisfied	with	this	equation.

FIGURE	2.6	The	OR	gate	symbol.

2.1.3.4	The	AND	Gate
The	AND	is	the	final	logic	gate	to	be	considered	in	this	chapter.	This	gate	can

be	constructed	by	two	switches	connected	in	series	as	in	Fig.	2.7.	In	this	setup,
when	both	inputs	are	equal	to	supply	voltage	(Vin1	=	VCC	and	Vin2	=	VCC),	then
output	equals	to	supply	voltage	as	well	(Vout	=	VCC).	For	all	other	cases,	output
voltage	will	be	equal	to	ground	(Vout	=	0).

FIGURE	2.7	The	AND	gate	formed	by	two	series	switches.

As	in	OR	gate,	we	can	simplify	working	principle	of	the	AND	gate.	Let’s	call
Vin1	as	in1,	Vin2	as	in2,	and	Vout	as	out.	Based	on	these	simplifications,	we	can
summarize	working	principle	of	the	AND	gate	as	follows:

As	can	be	seen	in	Eq.	(2.3),	the	AND	gate	gives	logic	level	one	when	both
serial	switches	have	input	logic	level	one.	Otherwise,	the	output	of	the	gate	will
be	logic	level	zero.
We	can	represent	the	AND	gate	in	symbolic	form	as	in	Fig.	2.8.	In	this	figure,

in1,	in2,	and	out	values	are	the	ones	in	Eq.	(2.3).	Hence,	the	relation	between
them	is	satisfied	with	this	equation.

FIGURE	2.8	The	AND	gate	symbol.

We	have	introduced	only	basics	of	digital	logic	gates	in	this	section.	The	aim
is	to	use	these	in	explaining	the	FPGA	architecture.	We	will	analyze	logic	gates
further	in	Chap.	7.

2.2	FPGA	Building	Blocks
The	architecture	of	the	FPGA	should	be	known	by	the	reader	to	appreciate	its

working	principles.	Although	the	reader	will	not	directly	interact	with	the
architecture,	this	knowledge	will	lead	to	better	usage	of	the	FPGA.	Besides,
design	principles	to	be	applied	in	implementing	a	digital	system	on	the	FPGA
will	make	sense.	Therefore,	we	will	introduce	basic	building	blocks	of	the	FPGA
(Xilinx	Artix-7	XC7A35T)	available	on	the	Basys3	and	Arty	boards	in	this
section.	These	building	blocks	will	be	represented	in	abstract	form.	Since	we	do
not	want	to	go	into	detail	of	digital	electronics,	we	believe	this	level	is	sufficient.

not	want	to	go	into	detail	of	digital	electronics,	we	believe	this	level	is	sufficient.
We	will	start	with	layout	of	the	Xilinx	Artix-7	XC7A35T	FPGA	next.

2.2.1	Layout	of	the	Xilinx	Artix-7	XC7A35T	FPGA
Basys3	and	Arty	boards	have	their	FPGA	from	the	Xilinx	Artix-7	XC7A35T

family.	To	be	more	specific,	the	FPGA	on	the	Basys3	board	is
XC7A35TCPG236-1.	Similarly,	the	FPGA	on	the	Arty	board	is
XC7A35TICSG324-1L.	These	two	FPGAs	share	similar	properties.	Therefore,
we	will	call	them	by	their	family	name	Xilinx	Artix-7	XC7A35T	from	this	point
on.	If	there	is	a	difference	in	the	FPGA,	then	we	specify	it	by	the	board	name.
The	Xilinx	Artix-7	XC7A35T	FPGA	is	basically	composed	of	nine	different

components.	These	are	input/output	blocks,	configurable	logic	blocks	(CLBs),
interconnect	resources,	block	RAM,	DSP	slices,	clock	management	block,
XADC	block,	high-speed	serial	I/O	transceivers,	and	PCIe	interface.	Layout	of
these	blocks	is	as	in	Fig.	2.9.	Most	of	these	blocks	can	also	be	observed	via
Vivado	design	suite	to	be	introduced	in	Chap.	4.	Therefore,	the	reader	will	have
chance	to	observe	which	of	them	are	used	in	his	or	her	digital	system	design.
Mentioned	blocks	(or	their	variants)	are	almost	standard	in	an	FPGA.	However,
some	of	these	may	be	missing	or	other	extra	blocks	may	be	available	in	different
FPGA	families.	The	reader	should	keep	this	in	mind	while	using	another	FPGA
family.

FIGURE	2.9	Basic	building	blocks	of	the	Artix-7	XC7A35T	FPGA.

2.2.2	Input/Output	Blocks
A	digital	device	interacts	with	the	outside	world	through	its	input	and	output

pins.	This	is	also	the	case	for	the	FPGA.	Hence,	data	from	the	outside	world	is
acquired	through	input	pins.	Output	is	fed	to	the	outside	world	using	output	pins.
Moreover,	these	input	and	output	pins	are	located	in	input/output	blocks	within
the	FPGA.
The	Artix-7	XC7A35T	FPGA	has	input/output	pins	which	can	operate	on

standard	voltage	levels	from	1.2	to	3.3	V.	The	FPGA	on	the	Basys3	board	has
106	such	input/output	pins.	In	a	similar	manner,	the	FPGA	on	the	Arty	board	has
210	such	pins.	These	input/output	pins	can	be	used	as	input,	output,	and	both.	In
the	first	case,	data	will	be	taken	from	outside	world	through	the	pin.	In	the

the	first	case,	data	will	be	taken	from	outside	world	through	the	pin.	In	the
second	case,	voltage	levels	will	be	fed	to	outside	world	through	the	pin.	In	the
third	case,	the	same	pin	can	be	used	for	both	input	and	output	purposes.
Input/output	pins	are	grouped	into	banks.	Two	pins	in	these	banks	are	grouped

as	positive	(P)	and	negative	(N)	pairs.	These	can	be	used	in	two	modes	as	single-
ended	and	differential.	In	the	single-ended	mode,	input	will	be	recognized	as
logic	level	zero	when	input	voltage	is	near	ground.	It	will	be	recognized	as	logic
level	one	when	input	voltage	is	near	VCC.	In	the	differential	mode,	input	will	be
recognized	as	logic	level	zero	when	the	voltage	at	pin	P	is	lower	than	the	voltage
at	pin	N.	When	the	voltage	at	pin	P	is	higher	than	the	voltage	at	pin	N,	then	input
will	be	taken	as	logic	level	one.
Input/output	pins	can	also	be	used	in	reference	mode.	Here,	input	will	be

taken	as	logic	level	zero	when	input	voltage	is	below	reference	voltage.	When
input	voltage	is	above	reference	voltage,	it	will	be	taken	as	logic	level	one.
Single-ended	pins	can	also	be	used	as	output.	When	output	is	at	logic	level

one,	the	corresponding	voltage	value	at	the	pin	will	be	VCC.	When	output	is	at
logic	level	zero,	the	corresponding	voltage	value	at	the	pin	will	be	ground.
Note	that	we	are	bound	by	input/output	pins	available	on	the	Basys3	and	Arty

boards.	Therefore,	please	see	Chap.	3	for	the	actual	pin	layout	on	these	boards.
For	more	information	on	input/output	blocks	and	their	properties,	please	see	[1].

2.2.3	Configurable	Logic	Blocks
Configurable	logic	blocks	are	the	basic	elements	used	to	implement	a	digital

system	on	an	FPGA	[2].	At	the	heart	of	CLBs	lies	look-up	tables	(LUTs),	flip-
flops,	and	multiplexers.	We	will	try	to	explain	working	principles	of	these
devices	in	generic	form.	Therefore,	they	may	not	correspond	to	actual
implementation	on	an	FPGA.	Let’s	start	with	the	multiplexer.

2.2.3.1	Multiplexer
A	multiplexer	is,	in	fact,	a	selector	with	N	select	bits	(pins),	2N	input	pins,	and

one	output	pin.	One	input	pin	at	a	time	is	connected	to	output.	Hence,	the	value
at	that	pin	will	be	seen	at	output.	Via	select	pins,	we	decide	on	which	input	pin
will	be	connected	to	output.
We	can	form	a	two	input	multiplexer	by	digital	logic	gates	in	Sec.	2.1.3.	Here,

the	aim	is	to	show	basic	layout	of	a	multiplexer.	We	provide	circuit	diagram	of
the	formed	multiplexer	in	Fig.	2.10.	Since	there	are	two	inputs	in	this	device,	it
is	called	a	two-to-one	multiplexer.

FIGURE	2.10	Circuit	diagram	of	two-to-one	multiplexer	built	from	basic	logic	gates.

We	can	summarize	working	principles	of	the	two-to-one	multiplexer	as
follows:

The	select	pin	(labeled	as	sel	in	Fig.	2.10)	decides	which	input	will	be
connected	to	output.
The	two-to-one	multiplexer	is	the	simplest	device	of	its	kind.	Let’s	consider	a

32-to-1	multiplexer.	This	device	has	five	select	pins	to	map	25	=	32	input	pins.
Assume	that	select	pins	have	value	10001.	Then,	17th	input	will	be	connected	to
output.	Therefore,	whatever	the	value	of	that	pin	is,	it	will	be	seen	at	output.	We
will	explore	working	principles	of	multiplexers	in	detail	in	Chap.	8.

2.2.3.2	Flip-Flop
Flip-flop	is	the	basic	memory	element	in	FPGA.	It	can	store	one	bit	of	data.

Although	a	flip-flop	can	be	constructed	by	digital	logic	gates	in	Sec.	2.1.3,	the
layout	will	be	slightly	complex.	Therefore,	we	postpone	this	operation	till	Chap.
9.	As	for	now,	it	is	important	to	remember	that	a	flip-flop	holds	one	bit	of	data
which	is	fed	to	it.	This	data	will	be	stored	in	the	flip-flop	till	it	is	changed	by	the
user.	Let’s	represent	the	flip-flop	in	abstract	form	as	in	Fig.	2.11.	In	this	figure,
bit	value	to	be	stored	in	the	flip-flop	is	set	by	in	pin.	The	stored	value	in	the	flip-
flop	is	obtained	from	out	pin.	Note	that	the	flip-flop	can	only	save	one	bit	as
either	logic	level	zero	or	one.

FIGURE	2.11	Abstract	form	of	a	flip-flop.

2.2.3.3	Look-Up	Table
There	is	no	detail	on	the	actual	implementation	of	a	LUT	in	the	Artix-7

XC7A35T	FPGA.	Therefore,	we	will	try	to	explain	it	using	known	digital
devices.	A	LUT	can	be	thought	of	as	a	collection	of	flip-flops	connected	to	input
pins	of	a	multiplexer.	Select	pins	of	the	multiplexer	will	be	taken	as	address	bits
of	the	flip-flop	to	be	reached.	This	architecture	can	be	used	to	implement	any
combinational	logic	function	which	has	total	number	of	variables	as	select	pins.
We	will	see	how	this	can	be	done	in	Chap.	7.	The	important	point	here	is	that	as
the	entry	of	flip-flops	change,	implemented	logic	function	will	also	change.	This
will	lead	to	reconfigurability	of	the	FPGA.

FIGURE	2.12	Abstract	form	of	an	N	input	LUT.

A	LUT	will	be	called	N	input	if	it	has	2N	entries.	Therefore,	it	needs	N	select
bits	as	explained	previously.	We	provide	such	an	abstract	LUT	composed	of
flip-flops	and	a	multiplexer	in	Fig.	2.12.	In	the	Artix-7	FPGA,	two	such	five-
input	LUTs	are	decoupled.	Each	couple	can	be	used	either	to	implement	two
five-input	combinational	logic	functions	with	the	same	input	and	different
outputs	or	one	six-input	combinational	logic	function.	Two	such	six-input	LUTs
can	be	combined	by	another	multiplexer	to	form	a	seven-input	LUT.	Two	such
seven-input	LUTs	(hence	four	six-input	LUTs)	can	be	combined	by	another
multiplexer	to	form	an	eight-input	LUT.	Hence,	a	combinational	logic	function
with	eight	inputs	can	be	formed	by	it.

2.2.3.4	Slices
LUTs,	flip-flops,	and	multiplexers	are	grouped	as	slices	in	the	CLB.	Each

slice	has	four	six-input	LUTs,	eight	flip-flops,	multiplexers,	and	other	support
circuitry.	There	are	two	slice	types	as	SLICEM	and	SLICEL.	Both	can	be	used
to	implement	combinational	logic	functions.	SLICEM	can	also	be	used	as	a
distributed	memory	element.	The	Xilinx	Artix-7	XC7A35T	FPGA	has	a	total	of
5200	slices	of	which	3600	are	SLICEL	and	1600	are	SLICEM.	We	will	explore
the	usage	of	distributed	memory	in	a	digital	system	in	detail	in	Chap.	9.	Each
SLICEM	can	also	be	used	as	a	32-bit	shift	register.	We	will	explain	working
principles	of	this	digital	device	in	Chap.	10.

2.2.4	Interconnect	Resources
What	we	mean	by	interconnect	resources	is	a	collection	of	wires	and

programmable	switches.	These	are	responsible	for	connecting	CLBs	and	other
building	blocks	within	the	FPGA.	Interconnect	is	also	called	routing	channels.
CLBs	in	the	Artix-7	FPGA	are	placed	in	a	grid	structure	which	simplifies

planning	of	interconnection	usage.	Note	that	it	is	not	necessary	to	know
interconnect	features	to	use	an	FPGA	at	the	beginner	or	intermediate	level.	The
Vivado	design	suite	to	be	introduced	in	Chap.	4	is	responsible	for	efficient	use	of
these	resources.

2.2.5	Block	RAM
Different	from	distributed	memory	elements	composed	of	SLICEM	blocks

within	CLBs,	the	Artix-7	FPGA	also	has	block	RAM	modules.	These	can	be
used	to	store	data.	Moreover,	they	can	form	buffers,	large	LUTs,	or	shift
registers.	Usage	of	these	block	RAMs	will	become	mandatory	when	soft-core
microcontrollers	are	considered	in	Chap.	11.
A	block	RAM	in	the	Artix-7	XC7A35T	FPGA	can	be	used	to	store	one	block

of	36-kbit	or	two	blocks	of	18-kbit	data.	There	are	50	such	blocks	within	the
FPGA.	Therefore,	the	total	block	RAM	capacity	for	the	FPGA	is	50	×	36	=	1800
kbits.	We	will	explore	the	usage	of	block	RAM	in	a	digital	system	in	detail	in
Chap.	9.
Each	36-kbit	block	RAM	can	have	64-bit	data	width.	Moreover,	extra	eight

bits	can	be	used	for	single-bit	error	correction	or	double-bit	error	detection
during	data	read	process.	We	will	explain	how	error	detection	can	be	done	in
Chap.	8.

2.2.6	DSP	Slices
There	are	dedicated	blocks	for	arithmetic	and	logic	operations	in	recent

FPGAs.	These	are	called	digital	signal	processing	(DSP)	slices.	In	the	Artix-7
FPGA,	these	slices	are	specifically	called	DSP48E1.	There	are	a	total	of	90	such

FPGA,	these	slices	are	specifically	called	DSP48E1.	There	are	a	total	of	90	such
slices	in	the	Artix-7	XC7A35T	FPGA.
Each	DSP	slice	can	perform	several	arithmetic	and	logic	operations.	For	our

purposes,	following	operations	are	the	most	important	ones:	multiplying	two
binary	numbers	of	length	25	and	18	bits;	adding,	subtracting,	and	accumulating
two	48-bit	numbers;	applying	logic	operations	on	two	48-bit	numbers.	These
operations	would	require	complex	algorithms	for	implementation	unless	a	DSP
slice	was	not	available.	Therefore,	DSP	slices	will	be	very	effective	in
implementation.	Related	to	this,	we	will	see	how	DSP	slices	can	be	used	in
arithmetic	operations	in	Chap.	6.	Vivado	design	suite	will	be	responsible	to	add
these	slices	to	our	design	whenever	needed.	For	more	information	on	DSP48E1,
please	see	[3].

2.2.7	Clock	Management
Clock	is	basically	a	periodic	square	signal	such	that	it	stays	at	logic	level	zero

and	one	for	certain	time	intervals.	Most	digital	systems	need	a	clock	signal	to
operate	in	synchronous	manner.	In	such	a	setting,	logic	operations	are	done	in
the	rising	edge	(from	logic	zero	to	one	transition)	or	falling	edge	(from	logic	one
to	zero	transition)	of	the	clock	signal.	Hence,	period	of	the	clock	signal	indicates
operation	speed	in	the	digital	system.	We	will	see	clock-based	operations	in
Chap.	10.
The	Artix-7	FPGA	does	not	have	internal	clock-generating	circuitry.

Therefore,	the	user	should	feed	a	clock	signal	to	the	FPGA.	Some	input/output
pins	are	capable	of	receiving	such	clock	signals.	As	the	clock	signal	is	fed	to	the
FPGA,	it	can	be	processed	by	the	clock	management	tile	(CMT)	and	distributed
through	the	FPGA.	Basys3	and	Arty	boards	have	external	clock	sources	to	feed
the	FPGA.	We	will	see	their	properties	in	Chap.	3.
The	Artix-7	FPGA	is	divided	into	regions	for	clocking	purposes.	Each	region

includes	most	or	all	FPGA	building	blocks.	There	are	six	such	clock	regions	in
the	Artix-7	XC7A35T	FPGA.	The	user	can	observe	these	clock	regions	through
the	Vivado	design	suite.	Moreover,	Vivado	is	responsible	to	manage	clock
signals	in	the	FPGA.	For	more	information	on	clock	management,	please	see	[4].

2.2.8	The	XADC	Block
An	analog	signal	can	be	processed	by	a	digital	system	after	being	sampled	and

quantized.	Module	performing	these	operations	is	called	the	analog-to-digital
converter	(ADC).	Since	recent	advances	in	digital	systems	require	processing
analog	signals,	the	Artix-7	FPGA	has	a	dedicated	block	called	XADC.

The	Artix-7	XC7A35T	FPGA	has	one	XADC	block	which	consists	of	two
ADC	modules.	Each	module	can	acquire	one	million	samples	per	second
(MSPS).	Each	sample	can	be	represented	by	12	bits.	Hence,	a	sample	can	be
represented	by	a	binary	number	in	the	range	0	to	212	−	1.	The	two	ADC
modules	in	the	XADC	block	can	process	two	different	analog	signals
simultaneously.
Since	we	are	using	Basys3	and	Arty	boards,	we	are	limited	by	analog	input

pins	provided	by	them.	Please	see	Chap.	3	related	to	this	issue.	Moreover,	for
more	information	on	the	XADC	block	and	how	it	can	be	used	in	practical
applications,	please	see	[5–7].

2.2.9	High-Speed	Serial	I/O	Transceivers
High-speed	serial	I/O	transceivers	(HSSIOs)	are	specialized	circuitry	to

transfer	and	receive	serial	data.	These	transceivers	are	necessary	to	transfer	data
at	speeds	around	gigabits	per	second	(Gb/s).	The	FPGA	on	the	Basys3	board	has
two	such	transceiver	blocks	which	can	transfer	data	up	to	speed	of	3.75	Gb/s.
Unfortunately,	the	FPGA	on	the	Arty	board	does	not	have	such	a	block.	For
more	information	on	transceiver	blocks,	please	see	[8].

2.2.10	Peripheral	Component	Interconnect	Express	Interface
Peripheral	component	interconnect	express	(PCIe)	is	a	high-speed	serial

connection	bus	standard.	The	Artix-7	XC7A35T	FPGA	has	one	integrated	block
for	PCIe	interfacing.	For	more	information	on	PCIe	interfacing,	please	see	[9].

2.3	FPGA-Based	Digital	System	Design	Philosophy
A	digital	system	may	be	implemented	by	using	different	design	strategies	and

resources.	This	section	deals	with	digital	system	design	philosophy	using
FPGAs.	In	other	words,	the	aim	of	this	section	is	emphasizing	the	usage	of
FPGAs	in	an	effective	manner.

2.3.1	How	to	Think	While	Using	FPGAs
The	first	important	point	to	remember	while	using	an	FPGA	for	digital	system

design	is	that	the	user	is	free	to	choose	the	design	methodology.	In	other	words,
the	same	digital	system	can	be	implemented	in	more	than	one	way.	Therefore,	it
is	the	designer’s	responsibility	to	pick	the	optimal	or	best	design	style	for	his	or
her	needs.
The	second	important	point	to	remember	while	using	FPGAs	is	that	in	the

beginning	there	is	no	predefined	block	to	do	the	job.	The	designer	has	a
powerful	and	unconstrained	resource	(within	limits)	to	construct	required	design
blocks.	Therefore,	a	strong	digital	logic	knowledge	is	required	to	design	efficient
and	optimized	FPGA	designs.	Vendors	are	also	providing	intellectual	property
(IP)	blocks	to	simplify	the	FPGA	usage.	These	are	valuable	sources	used
extensively	in	practical	applications.	We	will	introduce	how	to	use	them	in
Chap.	4.
The	third	important	point	to	remember	while	using	FPGAs	is	in	terms	of	their

programming.	There	are	hardware	description	languages	(HDLs)	for	this
purpose.	We	will	introduce	two	popular	HDLs	in	Chap.	5.	Although	we	can	use
the	phrase	“programming	an	FPGA”	in	some	parts	of	the	book,	the	user	should
always	bear	in	mind	that	we	are	implementing	a	specific	digital	system.
Therefore,	a	C	like	sequential	code	will	not	be	prepared	in	HDL.	On	the
contrary,	design	philosophy	should	be	based	on	block-based	digital	system
implementation.	These	blocks	should	be	implemented	in	parallel	whenever
possible	to	get	the	best	performance	from	an	FPGA.
The	fourth	important	point	to	remember	while	using	an	FPGA	is	its

reconfigurability.	Since	an	FPGA	can	be	reconfigured	after	initial	design	has
been	done,	this	property	can	be	used	whenever	needed.	Therefore,	the	user	can
benefit	from	the	reconfigurability	property	of	the	FPGA	to	improve	and	modify
the	design	even	after	it	has	been	finalized	and	embedded	on	the	device.

2.3.2	Advantages	and	Disadvantages	of	FPGAs
We	can	categorize	digital	system	design	and	implementation	resources	into

four	groups	as	discrete	element,	application-specific	integrated	circuit	(ASIC),
the	FPGA,	and	microcontroller	based.	The	standard	question	arises.	When
should	we	use	an	FPGA	instead	of	other	design	options?	Or,	what	are	the
advantages	and	disadvantages	of	using	the	FPGA	over	other	design	options?
Let’s	try	to	answer	this	question	by	comparing	the	FPGA	with	other	design
options.
A	digital	system	can	be	implemented	using	discrete	elements.	This	has	been

the	design	strategy	for	a	long	time.	The	advantage	here	is	that	the	designer	only
uses	needed	logic	gates	or	discrete	elements.	Moreover,	using	these	does	not
require	any	expertise	besides	basic	logic	knowledge.	On	the	other	hand,	using
discrete	elements	in	logic	design	is	not	feasible	in	most	cases.	First,	physical
space	needed	to	implement	them	may	be	limited.	Second,	wire	connections
between	discrete	elements	may	become	prohibitive	in	implementation.	Third,	the
design	will	be	static	once	implemented.	The	FPGA	provides	a	neat	solution	to
these	problems.	Size	of	an	FPGA	chip	is	fixed	independent	of	logic	elements

these	problems.	Size	of	an	FPGA	chip	is	fixed	independent	of	logic	elements
inside	it.	Moreover,	interconnection	of	these	elements	is	implicit	in	the	FPGA.
Therefore,	wiring	of	logic	elements	is	not	an	issue.	The	most	important
advantage	of	the	FPGA	comes	when	design	needs	to	be	reconfigured.	Here,
using	the	FPGA	simplifies	life	for	the	designer.	The	design	can	be	reconfigured
by	altering	the	corresponding	HDL	section.	The	only	issue	here	is	the	need	of
expertise	in	HDL.
ASICs	provide	a	good	alternative	to	discrete	implementation.	They	overcome

the	space	and	wiring	problems.	When	mass-produced,	an	ASIC	chip	becomes
cheaper.	Moreover,	the	ASIC	chip	will	be	specific	to	the	design.	Therefore,	it
will	only	use	the	required	number	of	digital	logic	elements.	Note	that	an	FPGA
chip	can	also	be	taken	as	ASIC.	In	this	section,	we	specifically	call	a	digital
circuit	as	ASIC	which	is	designed	for	a	specific	purpose.	Therefore,	once
designed	the	topology	will	be	fixed.	This	is	the	drawback	of	ASIC	design.	The
biggest	problem	in	using	ASIC	is	its	fabrication	time.	FPGAs	provide	a	clear
advantage	here.	In	fact,	most	ASIC	designs	are	prototyped	and	verified	on	the
FPGA	before	mass	production	for	this	purpose.
A	microcontroller	can	be	used	instead	of	FPGA	in	most	cases.	They	share

similar	characteristics	such	as	reconfigurability,	compactness,	and	cheapness.
The	first	difference	between	them	is	that	the	microcontroller	has	a	unique	set	of
commands	(instruction	set)	to	perform	an	action.	Therefore,	the	user	should
adjust	his	or	her	design	accordingly.	This	is	not	an	issue	to	an	FPGA	user.	As	we
have	mentioned	previously,	the	FPGA	can	be	taken	as	a	free	design	environment
within	limits.	Therefore,	an	FPGA	is	more	flexible	compared	to	the
microcontroller.	However,	we	should	admit	that	programming	a	microcontroller
is	fairly	easy	compared	to	managing	an	FPGA.	The	second	difference	between
the	microcontroller	and	FPGA	is	power	consumption	in	which	the	FPGA	has	a
clear	advantage.	The	third	difference	between	the	microcontroller	and	FPGA	is
in	the	inherent	parallel	implementation	capacity	of	the	FPGA.	A	microcontroller
is	a	sequential	device	such	that	commands	are	performed	step	by	step.	However,
the	FPGA	can	be	reconfigured	as	a	parallel	device.	Hence,	desired	operations
can	be	performed	faster	in	orders	of	magnitude	in	the	FPGA.	Note	that	a
microcontroller	can	be	implemented	using	an	FPGA.	We	will	introduce	this
concept	in	Chap.	11.

2.4	Usage	Areas	of	FPGAs
FPGAs	can	be	used	in	almost	all	areas	where	digital	systems	are	needed.	To

motivate	the	reader	and	show	why	learning	digital	design	using	the	FPGA	is
important,	we	list	possible	usage	areas	as	follows:	aerospace,	automotive,
broadcast,	consumer	electronics,	defense,	high-performance	computing,

broadcast,	consumer	electronics,	defense,	high-performance	computing,
industrial	applications,	medical	applications,	and	wireless	and	wired
communications.	These	are	not	the	only	usage	areas	of	FPGAs.	New
applications	may	emerge	in	time.

2.5	Summary
An	FPGA	is	a	good	alternative	to	implement	a	digital	system.	However,	the

reader	should	understand	what	an	FPGA	is	before	using	it	in	his	or	her	design.
This	chapter	introduced	key	FPGA	concepts	for	this	purpose.	Therefore,	we
started	with	digital	electronics	and	explored	how	basic	digital	logic	gates	can	be
constructed	from	these.	Then,	we	evaluated	basic	building	blocks	of	an	FPGA.
Here,	we	focused	on	CLB	since	it	is	the	basic	building	block	used	in	digital
system	implementation	on	an	FPGA.	Finally,	we	considered	the	design
philosophy	to	be	followed	while	using	an	FPGA.	We	believe	these	topics	will	be
of	great	use	in	understanding	concepts	to	be	introduced	in	the	following
chapters.	Therefore,	we	suggest	the	reader	to	grasp	them	fully	before	leaving	this
chapter.

2.6	Exercises
2.1			Besides	the	OR	and	AND	logic	gates,	there	are	also	NOR	(NOT-OR)
and	NAND	(NOT-AND)	gates.	Use	basic	logic	gate	structures	in	Figs.	2.3,
2.5,	and	2.7	to	construct	them.
2.2			There	is	also	an	XOR	gate	used	in	some	applications.	Construct	this
gate	using	OR	and	AND	logic	gates.
2.3			The	FPGA	is	not	the	only	device	for	digital	system	implementation.
Make	research	for	similar	devices	developed	in	the	past.
2.4			The	Artix-7	FPGA	is	the	family	we	consider	in	this	book.	However,
Xilinx	has	other	FPGA	families	as	well.	Pick	two	such	families	and
compare	their	properties	with	the	Artix-7	FPGA.
2.5			Xilinx	is	not	the	only	FPGA	producer	in	the	market.	Make	research	on
other	producers.

a.	Comment	on	market	share	of	the	FPGA	developers.
b.	Compare	general	properties	of	developed	FPGAs	by	different
producers,	if	possible.

2.6			What	is	the	main	difference	between	a	microcontroller	and	an	FPGA?

CHAPTER	3

Basys3	and	Arty	FPGA	Boards

Throughout	the	book,	we	will	use	two	different	field-programmable	gate
array	(FPGA)	boards:	Basys3	and	Arty.	Both	boards	have	the	Xilinx	Artix-7
FPGA	on	them.	Although	these	boards	have	similar	characteristics,	Basys3	is
more	suitable	for	education	purposes	since	it	has	several	input/output
connections.	On	the	other	hand,	Arty	is	primarily	developed	for	soft-core
microcontrollers	to	be	introduced	in	Chap.	11.	Moreover,	it	has	Arduino
compatible	pins.	Hence,	shields	available	for	Arduino	can	be	used	with	Arty.
In	this	chapter,	we	will	briefly	explore	the	properties	of	Basys3	and	Arty

boards.	We	will	also	analyze	peripheral	devices	and	connectors	on	each	board
besides	the	FPGA.	While	doing	this,	we	will	not	go	into	the	details	of	the
connection	diagrams	and	pin	correspondence	between	a	device	(or	connector)
and	an	FPGA.	Since	this	correspondence	will	be	done	by	the	Vivado	design	suite
(to	be	introduced	in	Chap.	4),	it	is	not	necessary	to	add	extra	complexity	at	this
level.	Note	that	we	have	introduced	general	properties	of	FPGAs	on	the	Basys3
and	Arty	boards	in	Chap.	2.	Explanations	in	this	chapter	will	be	closely	related
to	information	given	there.

3.1	The	Basys3	Board
The	first	board	to	be	considered	in	this	chapter	is	Basys3	developed	by

Digilent	Inc.	[10].	As	mentioned	previously,	this	board	is	suitable	for	education
purposes	since	it	has	several	input/output	connections.	Let’s	start	with	the	board
layout	in	Fig.	3.1.	In	this	figure,	each	important	block	is	labeled	by	a	number.
Explanation	of	each	label	is	given	in	Table	3.1.	Since	the	SPI	flash,	power
supply	regulator,	and	the	oscillator/clock	circuitry	are	not	visible	in	Fig.	3.1,	they
are	labeled	B1,	B2,	and	B3	in	the	table.

FIGURE	3.1	The	Basys3	board	layout.

TABLE	3.1	Explanation	of	Labels	in
Fig.	3.1

Besides	the	Artix-7	FPGA	(label	17),	blocks	in	Table	3.1	can	be	categorized
into	six	groups.	These	are	powering	the	board,	input/output,	configuring	the
FPGA,	advanced	connectors,	external	memory,	and	oscillator/clock.	Next,	we
explain	each	category	in	detail.

3.1.1	Powering	the	Board

The	Basys3	board	can	be	powered	either	from	the	USB	port	(label	13)	or	from
an	external	power	supply	which	should	be	connected	to	the	external	power
connector	(label	14).	If	an	external	power	supply	is	used,	it	should	be	able	to
deliver	a	DC	voltage	between	4.5	and	5.5	V	with	at	least	1-A	current.	The	power
source	select	jumper	(label	16)	can	be	used	to	select	the	power	source	to	be	fed
to	the	board.	Input	voltage	(either	from	the	USB	or	external	source)	is	regulated
by	power	supply	regulators	(label	B2).	The	power	switch	(label	15)	turns	on	and
off	the	board.	The	power	LED	(label	1)	indicates	that	the	board	is	turned	on	and
operating	normally.	Connection	diagram	between	all	these	elements	can	be
found	in	[10].

3.1.2	Input/Output
There	are	several	digital	input/output	connections	on	the	Basys3	board.	These

can	be	summarized	as	peripheral	module	(Pmod)	connectors,	four-digit
sevensegment	display,	16	slide	switches,	16	LEDs,	and	five	push	buttons.	Let’s
explain	these	in	detail.
There	are	three	Pmod	connectors	(label	2)	for	digital	input/output.	Pin	layout

of	a	Pmod	connector	is	as	in	Fig.	3.2.	As	can	be	seen	in	this	figure,	there	are	2	×
10	female	pins	in	the	connector.	Among	these,	2	×	1	pins	are	for	ground	and	2	×
1	pins	are	for	VCC	supply	voltage.	The	FPGA	receives	and	transmits	digital	data
through	the	remaining	Pmod	pins.	There	is	also	an	analog	signal	Pmod
connector	(label	3)	on	the	Basys3	board.	Pins	in	this	connector	are	connected	to
analog	input	pins	of	the	FPGA.	The	XADC	block	in	the	FPGA	(introduced	in
Sec.	2.2.8)	receives	analog	signals	through	these	pins.	Pin	assignments	between
four	Pmod	connector	pins	and	the	Artix-7	FPGA	on	the	Basys3	board	can	be
found	in	[10].

FIGURE	3.2	The	Basys3	board	Pmod	connector	pin	layout.

There	is	a	four-digit	sevensegment	display	(label	4)	on	the	Basys3	board.
Each	digit	in	this	display	is	composed	of	seven	segments	arranged	in	a	squarish
8	form.	These	segments	are	connected	in	common	anode	form	[10].	Hence,
when	a	logic	level	zero	is	applied	to	a	segment,	it	turns	on.	Pin	connection
between	sevensegment	display	and	the	FPGA	can	be	found	in	[10].

between	sevensegment	display	and	the	FPGA	can	be	found	in	[10].
There	are	16	slide	switches	(label	5)	on	the	Basys3	board.	These	are

connected	to	the	FPGA	through	series	resistors.	These	switches	can	be	used	as
input	to	the	FPGA.	Depending	on	the	state	of	a	switch,	it	can	either	generate
constant	input	of	logic	level	zero	or	one	to	the	FPGA.	Pin	connection	between
these	switches	and	the	FPGA	can	be	found	in	[10].
There	are	16	LEDs	(label	6)	on	the	Basys3	board.	These	are	connected	to	the

FPGA	through	resistors.	These	LEDs	can	be	used	as	output	from	the	FPGA.
When	a	logic	level	one	is	applied	to	an	LED,	it	turns	on.	When	a	logic	level	zero
is	applied	to	an	LED,	it	turns	off.	Pin	connection	between	these	16	LEDs	and	the
FPGA	can	be	found	in	[10].
There	are	five	push	buttons	(label	7)	on	the	Basys3	board.	These	can	be	used

as	input	to	the	FPGA.	Push	buttons	are	arranged	in	active	high	setup	such	that
when	pressed	they	provide	logic	level	one.	At	rest,	they	provide	logic	level	zero.
Pin	connection	between	these	push	buttons	and	the	FPGA	can	be	found	in	[10].
To	remind	again,	we	will	use	the	Vivado	design	suite	to	interact	with	all	these

input/output	connections	in	the	following	chapters.	Therefore,	it	is	not
mandatory	to	learn	which	FPGA	pin	is	connected	to	which	Basys3	block.	We
expect	this	abstraction	to	simplify	design	steps.

3.1.3	Configuring	the	FPGA
The	FPGA	should	be	configured	(programmed)	to	operate.	The	configuration

file	will	be	generated	by	Vivado	design	suite	to	be	explained	in	Chap.	4.	The
generated	file	can	be	fed	to	the	FPGA	in	three	ways.	The	first	method	is	using
the	shared	UART/JTAG	USB	port	(label	13).	We	will	use	this	method	while
configuring	the	FPGA	through	Vivado.	The	second	method	is	using	the	SPI
flash	(label	18).	To	do	so,	the	configuration	file	should	have	been	stored	in	flash
beforehand.	The	third	method	is	storing	the	configuration	file	in	a	USB	stick	and
using	it	through	the	USB	host	connector	(label	11).	By	the	help	of	an	auxiliary
function	microcontroller,	programming	can	be	done.	On	Basys3,	there	is	a
PIC24FJ128	microcontroller	(label	19)	for	this	purpose	[11].	The	programming
mode	jumper	(label	10)	can	be	used	to	set	the	FPGA	programming	method.
More	information	on	the	second	and	third	methods	can	be	found	in	[10].	When
the	FPGA	is	successfully	configured	by	any	of	the	mentioned	three	methods,	the
programming	done	LED	(label	8)	turns	on.	Note	that	the	“programming	done”
signal	is	fed	by	the	FPGA.	The	FPGA	configuration	reset	button	(label	9)	can	be
used	to	reset	the	FPGA	configuration.

3.1.4	Advanced	Connectors
There	are	advanced	connectors	on	the	Basys3	board.	These	are	the	USB	host

connector,	VGA	connector,	and	shared	UART/JTAG	USB	port.	Let’s	briefly
explain	them.
The	USB	host	connector	(label	11)	can	be	used	to	transfer	the	configuration

file	to	the	FPGA.	The	connector	also	has	USB	human	interface	device	(HID)
capability.	These	two	properties	can	be	performed	through	the	PIC24FJ128
microcontroller	(label	19)	connected	to	the	connector.	We	will	use	the	USB	HID
capability	to	connect	keyboard	and	mouse	to	the	Basys3	board	in	Chap.	12.
More	information	on	the	usage	of	the	USB	host	connector	and	PIC
microcontroller	can	be	found	in	[10].
There	is	a	VGA	connector	(label	12)	on	the	Basys3	board.	This	connector

allows	12-bit	data	transfer	(four	bits	for	red,	four	bits	for	blue,	four	bits	for	green
pins)	to	a	VGA	display	device.	More	information	on	VGA	can	be	found	in	[10].
We	will	use	the	VGA	connector	to	display	an	image	on	a	monitor	in	Chap.	12.
The	shared	UART/JTAG	USB	port	(label	13)	is	mainly	used	to	configure

(program)	the	FPGA	via	Vivado.	We	will	explore	how	to	do	this	in	Chap.	4.	The
shared	UART/JTAG	USB	port	also	has	a	USB-UART	bridge	(label	18)
connected	to	it	[12].	Therefore,	it	can	also	be	used	as	a	UART	medium	to
communicate	the	FPGA	with	PC	or	another	device.	We	will	explore	how	to	use
this	property	in	Chap.	12.	More	information	on	the	usage	of	shared	UART/JTAG
USB	port	and	USB-UART	bridge	can	be	found	in	[10].

3.1.5	External	Memory
The	Basys3	board	has	a	32-Mbit	non-volatile	serial	flash	(label	B1)	as

external	memory	developed	by	Spansion	[13].	This	device	is	connected	to	Artix-
7	FPGA	through	a	dedicated	SPI	bus.	Pin	connections	between	the	FPGA	and
SPI	flash	can	be	found	in	[10].	The	FPGA	configuration	files	can	be	saved	in
this	flash	memory.	Moreover,	the	FPGA	can	be	set	to	read	these	files
automatically	at	start	up.	The	Artix-7	FPGA	configuration	file	needs	over	16
Mbits	of	memory	space.	Therefore,	the	remaining	memory	space	(approximately
16	Mbits)	will	be	available	to	the	user.

3.1.6	Oscillator/Clock
The	Basys3	board	has	an	onboard	oscillator/clock	circuitry	(label	B3)	working

at	100	MHz.	The	clock	signal	generated	by	the	oscillator	is	fed	to	the	Artix-7
FPGA	through	its	pins.	Therefore,	this	onboard	oscillator	allows	user	to	generate
a	required	clock	(within	limits)	in	the	design.

3.2	The	Arty	Board
The	second	board	to	be	considered	in	this	chapter	is	Arty.	This	evaluation	kit

is	jointly	developed	by	Digilent	Inc	and	Avnet	[14].	As	mentioned	previously,
this	board	is	more	suitable	for	soft-core	microcontrollers	to	be	introduced	in
Chap.	11.	Let’s	start	with	the	board	layout	given	in	Fig.	3.3.	In	this	figure,	each
important	block	is	labeled	by	a	number.	Explanation	of	each	label	is	given	in
Table	3.2.	Since	the	oscillator/clock	circuitry	is	not	visible	in	Fig.	3.3,	it	is
labeled	as	B1	in	the	table.

TABLE	3.2	Explanation	of	Labels	in
Fig.	3.3

FIGURE	3.3	The	Arty	board	layout.

Besides	the	Artix-7	FPGA	(label	18),	blocks	in	Table	3.2	can	be	categorized
into	six	groups.	These	are	powering	the	board,	input/output,	configuring	the
FPGA,	advanced	connectors,	external	memory,	and	oscillator/clock.	Next,	we
explain	each	category	in	detail.

3.2.1	Powering	the	Board
The	Arty	board	can	be	powered	in	three	ways	as	using	the	shared

UART/JTAG	USB	port	(label	2),	external	power	jack,	and	Arduino/chipKIT
connectors	(label	10).	Throughout	the	book,	we	will	assume	that	the	shared

UART/JTAG	USB	port	is	used	for	powering	the	board.	For	external	power
usage,	please	see	[14].	The	power	source	select	jumper	(label	4)	can	be	used	to
select	the	power	source	to	be	fed	to	the	board.	Input	voltage	(either	from	the
USB	or	external	source)	is	regulated	by	the	power	supply	regulator	(label	20).
The	power	LED	(label	6)	indicates	that	the	board	is	turned	on	and	operating
normally.	Connection	diagram	between	all	these	elements	can	be	found	in	[14].

3.2.2	Input/Output
There	are	several	digital	input/output	connections	on	the	Arty	board.	These

can	be	summarized	as	four	Pmod	connectors,	Arduino/chipKIT	shield	connector,
four	tricolor	LEDs,	four	LEDs,	four	slide	switches,	four	push	buttons,	and
chipKIT	processor	reset	button	and	jumper.	Let’s	explain	these	in	detail.
There	are	four	Pmod	connectors	(label	15)	for	digital	input/output.	Pin	layout

of	a	Pmod	connector	is	the	same	as	in	Fig.	3.2.	In	other	words,	Pmod	connectors
used	in	Arty	are	the	same	as	in	Basys3.	However,	Pmod	connectors	in	the	Arty
board	are	grouped	into	two	categories	as	standard	(labeled	as	JA	and	JD	on	the
board)	and	high	speed	(labeled	as	JB	and	JC	on	the	board).	Standard	Pmod
connectors	are	connected	to	the	FPGA	via	series	resistors	which	prevent
accidental	short	circuit.	High-speed	connectors	do	not	have	such	resistors.
Hence,	they	should	be	used	with	care.	More	information	on	Pmod	connectors
can	be	found	in	[14].
Different	from	Basys3,	Arty	has	Arduino/chipKIT	shield	connectors	(label

10).	These	allow	user	to	connect	available	Arduino	and	chipKIT	shields.	More
information	on	Arduino/chipKIT	shield	connectors	can	be	found	in	[14].
There	are	four	tricolor	LEDs	(labeled	as	LD0–LD3	on	the	board)	and	four

standard	LEDs	(labeled	as	LD4–LD7	on	the	board).	All	of	these	LEDs	are
indicated	by	label	4	in	Fig.	3.3.	Four	standard	LEDs	operate	as	the	ones	on
Basys3	board.	Each	tricolor	LED	is	composed	of	three	LEDs	with	red,	green,
and	blue	colors.	Each	internal	LED	can	be	turned	on	as	if	using	the	standard
LED.	However,	Digilent	suggests	using	pulse	width	modulation	(PWM)	signals
to	use	tricolor	LEDs.	More	information	on	standard	and	tricolor	LEDs	on	the
Arty	board	can	be	found	in	[14].
There	are	four	slide	switches	(label	8)	and	four	push	buttons	(label	9)	on	the

Arty	board.	They	have	the	same	characteristics	as	in	the	Basys3	board.
Therefore,	we	direct	the	reader	to	previous	section.	More	information	on	slide
switches	and	push	buttons	on	the	Arty	board	can	be	found	in	[14].
The	chipKIT	processor	reset	jumper	(label	12)	and	button	(label	14)	are

available	to	be	used	in	soft-core	microcontroller	designs.	Specifically,	they	can

be	used	to	reset	the	designed	microcontroller.	Hence,	these	can	be	of	use	while
designing	a	soft-core	microcontroller	in	Chap.	11.
To	remind	again,	we	will	use	the	Vivado	design	suite	to	interact	with	all	these

input/output	connections	in	the	following	chapters.	Therefore,	it	is	not
mandatory	to	learn	which	FPGA	pin	is	connected	to	which	Arty	block.	We
expect	this	abstraction	to	simplify	design	steps.

3.2.3	Configuring	the	FPGA
Configuring	the	FPGA	on	the	Arty	board	is	similar	to	Basys3.	Therefore,	we

only	explain	the	labels	in	Fig.	3.3	related	to	the	FPGA	configuration.	The
programming	mode	jumper	(label	13)	can	be	used	to	set	the	FPGA	programming
method.	When	the	FPGA	is	successfully	configured,	the	“programming	done”
LED	(label	1)	turns	on.	Note	that	the	“programming	done”	signal	is	fed	by	the
FPGA.	The	FPGA	configuration	reset	button	(label	16)	can	be	used	to	reset	the
FPGA	configuration.	More	information	on	these	can	be	found	in	[14].

3.2.4	Advanced	Connectors
There	are	advanced	connectors	on	the	Arty	board.	These	are	the	shared

UART/JTAG	USB	port,	ethernet	connector,	and	Arduino/chipKIT	compatible
SPI	header.	Let’s	briefly	explain	them.
The	shared	UART/JTAG	USB	port	(label	2)	is	mainly	used	to	configure

(program)	the	FPGA.	We	will	explore	how	to	do	this	in	Chap.	4.	The	shared
UART/JTAG	USB	port	also	has	a	USB-UART	bridge	(label	21)	connected	to	it
[12].	Therefore,	it	can	also	be	used	as	a	UART	medium	to	communicate	the
FPGA	with	PC	or	another	device.	We	will	explore	how	to	use	this	property	in
Chap.	12.	More	information	on	the	usage	of	shared	UART/JTAG	USB	port	and
USB-UART	bridge	can	be	found	in	[14].
The	Arty	board	has	an	ethernet	connector	(label	3)	and	transceiver	chip	(label

22)	by	Texas	Instruments	[15].	The	transceiver	chip	is	also	called	physical	layer
(PHY).	Through	the	connector	and	transceiver,	ethernet	communication	can	be
done.	We	will	explore	how	to	do	this	in	Chap.	12.	More	information	on	the
ethernet	connector	and	transceiver	chip	can	be	found	in	[14].
Arty	also	has	an	Arduino/chipKIT	compatible	SPI	header	(label	11).	This

header	can	be	used	in	connection	with	Arduino/chipKIT	compatible	shields.
More	information	on	the	SPI	header	can	be	found	in	[14].

3.2.5	External	Memory
Arty	has	two	different	external	memory	blocks.	The	first	one	is	a	128-Mbit

non-volatile	serial	flash	memory	(label	17)	developed	by	Micron	[16].	This

non-volatile	serial	flash	memory	(label	17)	developed	by	Micron	[16].	This
device	is	connected	to	the	Artix-7	FPGA	through	a	dedicated	SPI	bus.	Pin
connections	between	the	FPGA	and	SPI	flash	can	be	found	in	[14].	The	FPGA
configuration	files	can	be	saved	in	this	flash	memory.	Moreover,	the	FPGA	can
be	set	to	read	these	files	automatically	at	startup.	The	Artix-7	FPGA
configuration	file	needs	over	16	Mbits	of	memory	space.	Therefore,	remaining
memory	space	(approximately	14	MB)	will	be	available	to	the	user.
The	second	memory	block	on	the	Arty	board	is	a	256-MB	DDR3L	SDRAM

(label	19)	developed	by	Micron	[17].	More	information	on	the	DDR3	SDRAM
and	its	connection	to	the	Artix-7	FPGA	can	be	found	in	[14].

3.2.6	Oscillator/Clock
The	Arty	board	has	an	onboard	oscillator/clock	circuitry	(label	B1)	working	at

100	MHz.	Clock	signal	generated	by	the	oscillator	is	fed	to	the	Artix-7	FPGA
through	its	pins.	Therefore,	this	onboard	oscillator	allows	user	to	generate	a
required	clock	(within	limits)	in	the	design.

3.3	Summary
Topics	introduced	in	this	chapter	are	specific	to	the	FPGA	boards	to	be	used

throughout	the	book.	Therefore,	they	will	be	needed	when	a	real-life	application
is	developed.	We	did	not	provide	detailed	connection	diagrams	in	this	chapter.
Instead,	we	directed	the	reader	to	related	references.	However,	the	reader	should
bear	in	mind	that	connection	between	the	FPGA	and	peripherals	on	the	Basys3
and	Arty	boards	will	be	done	via	the	Vivado	design	suite.	Therefore,	it	is	not
mandatory	to	memorize	them.	Finally,	the	reader	can	consult	information	in	this
chapter	while	exploring	the	following	chapters	of	the	book.

3.4	Exercises
3.1			We	have	two	boards	Basys3	and	Arty.	Compare	properties	of
peripherals	on	these	boards.
3.2			When	should	we	choose	the	Basys3	board?	Why?
3.3			When	should	we	choose	the	Arty	board?	Why?

CHAPTER	4

The	Vivado	Design	Suite

Vivado	design	suite	is	the	software	environment	we	will	be	using	throughout
the	book.	Therefore,	we	will	explain	its	properties	starting	from	installation	step.
Then,	we	will	explain	how	to	create	a	new	project	containing	either	the	Verilog
or	VHDL	description	of	a	simple	digital	system.	Afterward,	we	will	introduce
tools	necessary	to	synthesize	and	implement	the	HDL	description.	While	doing
this,	we	will	emphasize	how	the	FPGA	building	blocks	introduced	in	Sec.	2.2
can	be	observed	in	Vivado.	This	way,	we	aim	to	show	the	reader	to	analyze	his
or	her	HDL	design	in	detail.	Then,	we	will	explain	how	to	program	the	FPGA	on
the	Basys3	and	Arty	boards	through	Vivado.	Finally,	we	will	introduce	IP
management	methods	in	Vivado.

4.1	Installation	and	the	Welcome	Screen
The	Vivado	design	suite	has	several	editions	with	different	properties.	For	our

purposes,	the	free	HL	WebPACK	edition	is	sufficient.	Installing	this	edition	is
straightforward.	However,	the	reader	should	first	create	a	Xilinx	account	for	this
purpose.	Then,	Vivado	can	be	installed	following	the	commands	on	the	screen.
Here,	we	assume	that	the	reader	uses	Vivado	on	a	PC	with	the	Microsoft
Windows	operating	system.	Please	consult	the	user	guide	for	using	Vivado
design	suite	on	other	operating	systems.
As	of	the	writing	of	this	book,	the	Vivado	design	suite	available	at	Xilinx’s

Web	page	was	version	2016.3.	Therefore,	we	will	use	it	throughout	the	book.
After	installation,	Vivado	starts	as	in	Fig.	4.1.	This	screen	tells	us	that	we	are
ready	to	go.

FIGURE	4.1	Vivado	welcome	screen.

4.2	Creating	a	New	Project
Let’s	create	our	first	HDL	project	in	Vivado.	We	can	start	by	clicking	on

‘Create	New	Project’	on	the	start	page	of	Vivado	as	in	Fig.	4.1.	Skip	the	first
welcome	popup	window	by	clicking	Next.	Now,	you	should	see	a	page	where
you	can	set	the	name	and	location	of	your	new	project	as	in	Fig.	4.2.

FIGURE	4.2	Create	a	new	project	window.

Let’s	call	our	project	as	first_project.	This	project	will	be	created	under
directory	.../Xilinx_Projects.	Click	Next	and	select	“RTL	Project”	in	the
upcoming	window.	Afterward,	“Add	Sources”	window	will	pop-up	as	in	Fig.
4.3.	At	this	point,	we	will	not	add	any	sources	to	the	project.	However,	we
should	select	the	“Target	language”	as	either	Verilog	or	VHDL	at	the	bottom	of
this	window.	In	a	similar	manner,	we	should	also	set	the	“Simulation	language”
as	Verilog,	VHDL,	or	Mixed	here.

FIGURE	4.3	Add	sources	window.

	
We	can	skip	the	following	two	optional	selection	windows	(Add	Existing	IP

and	Add	Constraints)	as	for	now.	The	next	window	will	be	on	selecting	the
FPGA	(called	the	default	part)	as	in	Fig.	4.4.	The	Artix-7	FPGA	on	the	Basys3
board	has	full	name	“XC7A35TCPG236-1”.	The	Artix-7	FPGA	on	the	Arty
board	has	full	name	“XC7A35TICS	G324-1L”.	Depending	on	the	application,
one	of	these	FPGAs	can	be	picked.	Note	that	the	selection	window	in	Fig.	4.4
also	summarizes	the	FPGA	properties	introduced	in	Sec.	2.2.	Click	Next	and	the
project	for	dedicated	device	will	be	created.

FIGURE	4.4	FPGA	selection	window.

FIGURE	4.5	Vivado	project	main	window.

Once	the	project	is	created,	you	should	see	the	main	window	as	in	Fig.	4.5.	On
the	left-hand	side	of	this	window,	there	is	Flow	Navigator	panel.	Through	it,	the
user	can	control	all	processes	related	to	the	project.	On	the	top	of	the	window,
the	user	can	see	source	files	and	their	properties.
We	can	add	a	source	file	to	the	project	by	clicking	on	Flow	Navigator	→

Project	Manager	→	Add	Sources.	Then,	we	should	select	“Add	or	create	design
sources”	from	the	popup	menu	as	in	Fig.	4.6a.	As	we	click	Next,	a	new	popup
window	should	appear	with	the	name	“Add	or	Create	Design	Sources”	as	in	Fig.
4.6b.	Here,	the	user	should	click	on	the	Create	File	button.	A	small	window
should	appear	as	in	Fig.	4.6c.	Select	the	file	type	as	Verilog	(or	VHDL),	name
the	file	as	first_system.	Choose	the	location	as	<Local	to	Project>.	Upcoming
window	asks	for	ports	within	the	project.	Do	not	define	any	ports	for	now.
Simply	click	OK	to	create	your	file.	The	generated	file	should	be	available	under
Sources	→	Design	Sources	directory	which	can	be	found	in	Vivado’s	Project
Manager	window.

FIGURE	4.6	Adding	a	source	file	to	the	project.

4.2.1	Adding	a	Verilog	File
Let’s	pick	Verilog	as	the	working	HDL	at	this	point.	Following	the	above

steps,	the	source	file	first_system.v	should	be	visible	in	the	Sources	window.
Open	this	file	by	double-clicking	on	it.	Copy	the	Verilog	description	in	Listing
4.1	to	the	opened	file.	We	will	explain	Verilog	commands	in	this	description	in
the	following	chapters.	Here,	we	will	only	use	it	to	explain	working	principles	of
Vivado.

Listing	4.1	Verilog	Description	to	be	Used	in	Explaining	Vivado

4.2.2	Adding	a	VHDL	File
We	can	also	pick	VHDL	as	the	working	HDL.	For	this	case,	the	source	file

first_system.vhd	should	have	been	created.	As	in	the	previous	section,	open	this
file	by	double-clicking	on	it.	Copy	the	VHDL	description	in	Listing	4.2	to	the
opened	file.	Again,	we	will	explain	VHDL	commands	in	this	description	in	the
following	chapters.

Listing	4.2	VHDL	Description	to	be	Used	in	Explaining	Vivado

4.3	Synthesizing	the	Project
The	first	step	in	realizing	a	digital	system	on	the	FPGA	is	synthesizing	it.	This

means	representing	digital	system’s	HDL	description	via	the	FPGA	elements
introduced	in	Sec.	2.2.	In	other	words,	this	step	transforms	the	system
description	from	code	to	physical	device.	Note	that	Vivado	is	responsible	for	this
operation.	Therefore,	synthesis	steps	are	hidden	to	the	user.
We	can	synthesize	the	HDL	description	added	to	the	project	by	clicking	on

Flow	Navigator	→	Synthesis	→	Run	Synthesis.	During	this	process,	we	can
monitor	events	from	the	Log	tab.	Let’s	pick	the	description	in	Listing	4.1	in	this
section.	Once	the	synthesis	is	finalized,	a	popup	window	will	appear	as	in	Fig.
4.7.	Here,	the	user	will	have	two	choices.	The	first	option	is	“Run
Implementation.”	We	will	postpone	it	till	the	next	section.	Instead,	we	will	select
the	“Open	Synthesized	Design”	option.

FIGURE	4.7	Synthesis	completion	window.

As	the	“Open	Synthesized	Design”	option	is	selected,	Vivado	subwindows
will	be	as	in	Fig.	4.8.	In	these,	the	reader	can	observe	almost	all	design
specifications	in	terms	of	reports	under	Flow	Navigator	→	Synthesis	→
Synthesized	Design.	The	designed	device	can	also	be	seen	in	the	Design
window.	Here,	placement	of	the	synthesized	design	on	the	FPGA	is	provided.
Unfortunately,	it	is	not	easy	to	see	the	layout	of	the	used	FPGA	blocks	in	this
window.

FIGURE	4.8	Vivado	after	synthesizing	the	project.

Although	all	generated	project	reports	are	important	after	synthesization,	we
will	focus	on	the	utilization	report.	This	report	will	be	as	in	Fig.	4.9	for	the
synthesized	design.	As	can	be	seen	in	this	figure,	one	slice	and	four	input/output
pins	are	used	during	synthesizing	the	HDL.	The	report	also	indicates	that	the
LUT	in	the	slice	is	used	as	a	logic	element.

FIGURE	4.9	Utilization	report	after	synthesizing	the	project.

The	reader	can	observe	the	synthesized	design	by	selecting	Flow	Navigator	→
Synthesis	→	Schematic.	The	result	will	be	as	in	Fig.	4.10.	As	can	be	seen	in	this
figure,	the	Verilog	description	in	Listing	4.1	is	realized	by	two	LUTs	(in	the
same	slice)	after	synthesis.

FIGURE	4.10	Schematic	view	of	the	design.

FIGURE	4.11	RTL	schematic	view	of	the	design.

Schematic	view	of	the	design	can	be	observed	via	selecting	Flow	Navigator
→	RTL	Analysis	→	Elaborated	Design	→	Schematic.	The	result	will	be	as	in
Fig.	4.11.	As	can	be	seen	in	this	figure,	the	schematic	view	is	given	in	terms	of
basic	logic	gates.	To	be	more	specific,	Verilog	description	of	the	first	system	in
Listing	4.1	has	two	input	ports	as	in1	and	in2.	The	system	has	two	output	ports
as	out1	and	out2.	Basic	logic	gates	AND,	OR,	NOT,	and	XOR	are	used	to
construct	the	system.	Hence,	schematic	view	under	the	RTL	analysis	option
summarizes	the	overall	system	fairly	well.	This	may	be	of	great	use	in	analyzing
combinational	and	sequential	digital	systems	to	be	introduced	in	the	following
chapters.

4.4	Simulating	the	Project
Synthesizing	the	project	results	in	the	generated	digital	system	from	its	HDL

description.	To	decide	whether	this	system	works	as	desired,	we	should	test	it.
This	can	be	done	by	feeding	input	to	the	system	and	observing	the	corresponding
output.	This	is	called	simulating	the	system.	The	second	step	in	realizing	the
project	on	the	FPGA	is	simulating	it.
We	have	to	create	a	testbench	file	to	simulate	the	designed	digital	system.

Therefore,	we	should	create	and	add	a	new	file	to	the	project.	To	do	so,	click	on
Flow	Navigator	→	Project	Manager	→	Add	Sources.	Then,	select	“Add	or
create	simulation	sources”	from	the	popup	menu	as	in	Fig.	4.6a.	As	we	click
Next,	a	new	popup	window	should	appear	with	the	name	“Add	or	Create
Simulation	Sources.”	Here,	the	user	should	click	on	the	Create	File	button.	A

small	window	should	appear	as	in	Fig.	4.6c.	Select	the	file	type	as	Verilog	(or
VHDL),	name	the	file	as	first_system_tb.	Choose	the	location	as	<Local	to
Project>.	The	upcoming	window	asks	for	ports	within	the	project.	Do	not	define
any	ports	for	now.	Simply	click	OK	to	create	your	file.	The	generated	file	should
be	available	under	Sources	→	Simulation	Sources	→	Sim_1	directory	which	can
be	observed	in	Vivado’s	Project	Manager	window.
Vivado	only	creates	an	empty	testbench	file.	The	user	should	add	all	input,

output,	and	call	function	declarations	to	test	the	digital	system	under
consideration.	Unfortunately,	the	testbench	file	is	composed	of	HDL	commands
to	be	introduced	in	Chap.	5.	Therefore,	we	will	provide	sample	testbench	files
for	Verilog	and	VHDL	descriptions	next.

4.4.1	Adding	a	Verilog	Testbench	File
We	will	first	generate	the	Verilog	testbench	file	for	the	description	in	Listing

4.1.	To	do	so,	we	will	benefit	from	the	file	in	Listing	4.3.	As	a	brief	explanation,
this	testbench	file	generates	input	patterns	changing	at	every	100	ns.	These	are
fed	to	the	digital	system	under	test	and	corresponding	output	is	obtained.	We
will	analyze	the	structure	of	this	testbench	file	in	detail	in	Sec.	5.2.

Listing	4.3	Testbench	File	for	the	Given	Verilog	Description

FIGURE	4.12	Setting	simulation	properties.

Just	copy	and	paste	all	the	lines	in	Listing	4.3	to	the	testbench	file	generated
under	Vivado.	Make	sure	that	the	third	line	in	the	description	reads	as	module
first_system_tb;.	In	a	similar	manner,	the	module	name	under	Unit	Under
Test	(UUT)	section	should	be	read	as	first_system	in	this	file.	Now,	the
designed	digital	system	is	ready	for	simulation.	Before	that,	we	should	set	the
runtime	for	simulation.	To	do	so,	click	on	Flow	Navigator	→	Simulation	→
Simulation	Settings	→	Simulation	and	change	the	xsim.simulate.runtime*	to	490
ns	as	in	Fig.	4.12.	This	runtime	is	suitable	to	view	all	input	and	output	values	for
this	simulation.	For	other	simulations,	the	runtime	should	be	set	accordingly.
To	start	the	simulation,	click	on	Flow	Navigator	→	Simulation	→	Run

Simulation	→	Run	Behavioral	Simulation.	When	the	simulation	ends,	Vivado
opens	a	waveform	window	in	the	workspace	named	“Untitled1.”	The	reader	can
use	zoom	tools	on	the	left-hand	side	and	fit	waveforms	in	the	window	to	check
all	input	and	output	combinations	in	time.	The	simulation	result	should	appear	as
in	Fig.	4.13	once	it	fits	into	the	window.	Note	that	the	default	background	color

was	set	as	black	for	this	window.	We	had	to	change	it	to	white	for	ease	of
observation.	The	user	can	check	the	simulation	results	to	observe	whether	the
designed	system	acts	as	desired.
Behavioral	simulation	is	not	the	only	option	in	observing	results.	Vivado	also

offers	post-synthesis	functional,	post-synthesis	timing,	post-implementation
functional,	and	post-implementation	timing	simulations.	The	reader	can	pick	the
most	suitable	one	for	his	or	her	needs.	We	will	only	use	behavioral	simulation
throughout	the	book.

FIGURE	4.13	Simulation	results	in	terms	of	input	and	output	waveforms	in	time.

FIGURE	4.14	Final	simulation	results	in	the	Objects	window.

The	final	simulation	result	(in	the	latest	simulation	time)	can	also	be	observed
in	Vivado’s	Objects	window.	We	provide	the	final	simulation	result	for	the
present	example	in	Fig.	4.14.	This	window	will	be	extremely	helpful	in	Chap.	6.

4.4.2	Adding	a	VHDL	Testbench	File
We	will	next	generate	the	testbench	file	for	the	VHDL	description	in	Listing

4.2.	As	in	previous	section,	we	will	benefit	from	the	previously	prepared	file	in
Listing	4.4.	We	will	analyze	the	structure	of	this	testbench	file	in	detail	in	Sec.
5.4.	Just	copy	and	paste	all	the	lines	in	Listing	4.4	to	the	testbench	file	generated
under	Vivado	as	for	now.	Afterward,	follow	the	steps	given	in	previous	section
for	simulation.	After	simulation	ends,	the	same	waveforms	should	be	obtained	as
in	Fig.	4.13.

4.5	Implementing	the	Synthesized	Project
The	third	step	in	realizing	the	digital	system	on	the	FPGA	is	implementing	it.

Here,	the	synthesized	HDL	design	is	prepared	to	be	implemented	to	target	the
FPGA	platform.	Besides,	optimization	and	minimization	tools	are	used	on	the
synthesized	design	to	decrease	the	FPGA	resource	usage.	Physical	properties	of
the	FPGA	(such	as	temperature	in	the	device)	are	also	taken	into	account	at	this
step.	We	will	talk	about	minimization	tools	in	Sec.	7.3.3.	However,	the	actual
optimization	and	minimization	tools	working	under	Vivado	are	hidden	to	the
user.	Therefore,	we	are	bound	by	Vivado	in	these	operations.

Listing	4.4	Testbench	File	for	the	Given	VHDL	Description

To	implement	the	design,	click	on	Flow	Navigator	→	Implementation	→	Run

Implementation.	When	the	implementation	ends,	Vivado	opens	a	window	as	in
Fig.	4.15.	As	in	the	synthesis	step,	the	reader	can	check	all	related	reports	from
the	Flow	Navigator	→	Implementation	→	Implemented	Design	section.
Although	all	generated	project	reports	are	important	in	the	Flow	Navigator	→

Implementation	→	Implemented	Design	section,	we	will	focus	on	the	utilization
report	as	in	the	synthesis	step.	This	report	will	be	as	in	Fig.	4.16.	As	can	be	seen
in	this	figure,	the	utilization	report	after	implementation	is	more	detailed
compared	to	the	one	obtained	after	synthesis	step.	Here,	the	reader	can	observe
that	one	SLICEL	is	used	in	implementation.

FIGURE	4.15	Vivado	after	implementing	the	project.

FIGURE	4.16	Utilization	report	after	implementing	the	project.

4.6	Programming	the	FPGA
The	fourth	and	final	step	in	realizing	the	digital	system	on	the	FPGA	is

programming	it	to	the	target	device.	This	can	be	done	by	clicking	Flow
Navigator	→	Program	and	Debug	→	Generate	Bitstream.	This	way,	Vivado
translates	the	implemented	design	to	the	format	(in	terms	of	a	bitstream)	such
that	it	can	be	fed	to	the	FPGA.	The	FPGA	on	the	Basys3	or	Arty	board	can	be
programmed	this	way	as	explained	in	Chap.	3.	However,	the	project	should	be
altered	beforehand	such	that	input	and	output	ports	can	be	assigned	to
appropriate	devices	on	the	target	board.	Therefore,	let’s	focus	on	this	issue	first.

4.6.1	Adding	the	Basys3	Board	Constraint	File	to	the	Project
If	we	want	to	realize	the	implemented	digital	system	on	the	Basys3	board,	we

should	assign	its	peripheral	devices	as	input	and	output	ports	first.	As	briefly
explained	in	Sec.	3.1,	the	hardware–software	interface	between	the	Basys3	board
and	the	implemented	design	can	be	set	up	by	a	constraint	file.
The	constraint	file	Basys3_Master.xdc	for	the	Basys3	board	can	be	obtained

from	[18].	There,	the	user	should	download	the	“Master	Xilinx	Design
Constraint	(XDC)”	file	under	“Docs	&	Designs”	tab.	As	the	downloaded	zip	file
is	extracted,	the	Basys3_	Master.xdc	should	be	recovered.	This	file	has	pin
information	about	clock,	switches,	LEDs,	sevensegment	display,	buttons,	Pmod
headers,	VGA	connector,	USB-RS232	interface,	USB	HID,	and	quad	SPI	flash
on	the	Basys3	board.
To	use	the	constraint	file	Basys3_Master.xdc,	move	it	to	your	project

directory.	Click	on	Add	Sources	under	Project	Manager	and	select	“add	or	create
constraint”	from	the	menu.	Click	Next.	Then,	click	on	Add	Files	in	the	opened
window.	Browse	and	locate	the	constraint	file	added	to	the	project	folder.	As	this

file	is	added	to	the	project,	it	can	be	seen	in	the	Sources	window	under	the
Constraints	→	constrs_1	folder.	Double-click	on	the	Basys3_Master.xdc	file	to
edit	it.	As	can	be	seen,	all	the	lines	are	commented	out	by	the	#	sign	in	the
beginning.	We	will	use	switches	sw[0]	and	sw[1]	as	inputs	in1	and	in2	in	Listing	4.1.
In	the	same	description,	we	will	use	LEDs	led[0]	and	led[1]	as	outputs	out1	and	out2.
Therefore,	uncomment	these	parts	in	the	constraint	file	and	save	it.
Since	input	and	output	ports	are	assigned	to	the	Basys3	switches	and	LEDs,

we	should	also	apply	these	changes	to	the	description	in	Listing	4.1.	The	new
description	file	can	be	obtained	by	replacing	in1	and	in2	with	sw[0]	and	sw[1],
respectively.	Also,	out1	and	out2	should	be	replaced	by	led[0]	and	led[1].	The
modified	description	file	will	be	as	in	Listing	4.5.	Apply	these	changes	to	the
source	file	first_system.v	in	the	project.

4.6.2	Programming	the	FPGA	on	the	Basys3	Board
Now,	we	have	all	the	necessary	files	to	realize	the	Verilog	description	in

Listing	4.5	on	the	FPGA	of	Basys3	board.	To	do	so,	synthesize	and	implement
the	HDL	description	as	explained	in	previous	sections.	As	implementation	is
complete,	click	on	Flow	Navigator	→	Program	and	Debug	→	Generate
Bitstream.	Select	Open	Hardware	Manager	from	the	popup	window	as	in	Fig.
4.17	when	the	bitstream	is	generated.

Listing	4.5	Verilog	Description	of	the	First	System	with	Switches	and	LEDs
as	Input	and	Output

FIGURE	4.17	Generate	bitstream	completion	window.

FIGURE	4.18	The	Hardware	Manager	window	after	Basys3	board	is	automatically	detected.

Hardware	Manager	window	launches	in	the	middle	of	the	screen.	By	the	way,
this	window	can	also	be	opened	by	clicking	on	Flow	Navigator	→	Program	and
Debug	→	Hardware	Manager.	The	title	of	the	window	appears	as	Hardware
Manager	-	unconnected.	Beneath	the	title	you	will	see	a	warning	as	No
hardware	target	is	open.	Open	target.	Click	on	Open	target	→	Auto	Connect
after	you	connect	the	Basys3	board	via	USB	port	to	the	computer.	Now,	you
should	see	localhost/xilinx_tcf/Digilent/21083637269A	near	the	Hardware
Manager	title.	If	the	Basys3	board	is	automatically	detected,	the	Hardware
Manager	window	will	be	as	in	Fig.	4.18.
Click	on	the	program	device	link	beneath	the	title	and	select	xc7a35t_0.	The

popup	window	in	Fig.	4.19	should	appear.	Click	Program	to	program	the	board.
As	this	operation	finalizes	successfully,	implemented	HDL	description	should	be
running	on	the	Basys3	board.

4.6.3	Adding	the	Arty	Board	Constraint	File	to	the	Project
The	project	in	Sec.	4.6.2	can	also	be	realized	on	the	Arty	board.	To	do	so,	we

should	first	add	the	constraint	file	for	this	board	to	the	project	instead	of	Basys3
board’s	constraint	file.	Besides,	the	same	Verilog	description	in	Listing	4.5	will
be	used	here.

FIGURE	4.19	Hardware	programming	window.

The	constraint	file	for	the	Arty	board	can	be	downloaded	from	[19].	After
extracting	this	zip	file,	rename	the	file	Arty_sw_btn_Demo.xdc	as
Arty_Master.xdc	for	consistency.

4.6.4	Programming	the	FPGA	on	the	Arty	Board
We	will	follow	the	same	steps	in	Sec.	4.6.2	to	program	the	FPGA	on	the	Arty

board.	If	everything	goes	as	expected	while	generating	the	bitstream,	then	the
FPGA	should	be	programmed	correctly.
There	is	one	minor	issue	due	to	Vivado.	Sometimes,	programming	the	FPGA

can-not	be	done	automatically.	Then,	the	bitstream	file	location	in	Fig.	4.19	will
be	empty.	The	reader	should	manually	enter	this	location.	For	the	present	design,
the	location	to	be	entered	will	be	as
H:/Xilinx_Projects/first_project/first_project.

runs/impl_1/first_system.bit.	Project	root	folder	is	H:/	for	our	case.	Then,
programming	can	be	done	as	expected.

4.7	Vivado	Design	Suite	IP	Management
We	can	benefit	from	existing	intellectual	property	(IP)	blocks	available	in

Vivado	for	our	design.	We	can	also	convert	a	Verilog	or	VHDL	description	to	an
IP	block	as	well.	In	this	section,	we	will	make	a	brief	introduction	to	these
topics.	Then,	we	will	extensively	use	these	options	in	the	following	chapters.	For
further	information	on	IP	management	in	Vivado,	please	see	[20–23].

4.7.1	Existing	IP	Blocks	in	Vivado
Vivado	has	extensive	IP	blocks	available	to	be	used	in	a	project.	These	can	be

reached	from	IP	Catalog	under	Project	Manager	window.	As	we	press	the
corresponding	button,	a	new	window	appears	as	in	Fig.	4.20.	The	reader	can
select	the	desired	IP	block	from	this	list.	In	the	following	chapters,	we	will	use
these	IP	blocks	in	our	projects.

4.7.2	Generating	a	Custom	IP
A	Verilog	or	VHDL	description	can	be	converted	to	a	custom	IP	block	in

Vivado.	This	increases	reusability	of	the	description.	Let’s	take	the
first_system	in	Listing	4.1	in	our	first	project.	We	can	create	a	custom	IP	from
this	description.	To	do	so,	we	should	first	select	“Create	and	Package	IP...”
option	under	the	Tools	section	in	Vivado.	A	new	window	appears	titled	as
“Create	and	Package	New	IP.”	As	we	click	Next,	a	new	window	appears	as	in
Fig.	4.21.	Here,	select	the	“Package	your	current	project”	under	the	“Packaging
Options.”

FIGURE	4.20	IP	Catalog	window.

FIGURE	4.21	Create	and	Package	New	IP	window.

The	next	window	summarizes	location	of	the	generated	IP	and	include
options.	Here,	select	“Include.xci	files”	option.	As	we	press	next,	a	new	window
appears	summarizing	the	IP	block	generation	process.	Pressing	Finish	in	this
window	generates	a	segment	as	in	Fig.	4.22.	Within	this	section,	the	reader	can
make	necessary	adjustments	related	to	the	generated	IP.	To	finalize	IP
generation,	we	should	select	the	Review	and	Package	option.	In	default	settings,
the	generated	custom	IP	will	not	be	archived	for	future	use.	Only	the	current
project	can	use	it.	To	change	this	option,	we	should	select	“edit	packaging
settings.”	In	the	opened	project	settings	window,	we	should	select	the	IP	tab.
Then,	“create	archive	of	IP”	should	be	checked	under	the	“After	Packaging”
part.	Within	the	window,	we	can	also	set	the	archive	name	and	location.	This
information	will	be	important	while	using	the	generated	IP	in	another	project.	As
we	press	OK,	Package	IP	button	appears.	Pressing	this	button	generates	the	IP
block	for	the	first	system.

FIGURE	4.22	Package	IP	-	first	system.

Generated	IP	block	for	the	first	system	can	be	seen	in	IP	catalog	under	the
UserIP	section	as	in	Fig.	4.23.	We	will	show	how	to	use	this	IP	block	in	a
description	in	Chap.	5.

4.8	Application	on	the	Vivado	Design	Suite
We	will	introduce	an	application	to	get	familiar	with	Basys3	and	Arty	boards

in	this	section.	Moreover,	topics	introduced	in	this	application	will	be	of	use	in
the	following	chapters.	Let’s	start	with	the	Basys3	board.
In	Listing	4.6,	we	provide	the	Verilog	description	in	which	LEDs	and

switches	on	the	Basys3	board	are	connected.	Therefore,	the	reader	can	turn
on/off	a	LED	by	the	corresponding	switch.	To	run	this	application,	generate	a
new	project	as	explained	in	this	chapter.	Include	the	Verilog	description	in
Listing	4.6	to	the	project.	Do	not	forget	to	include	the	Basys3	board	XDC	file	to
the	project.	Within	this	file,	enable	all	LED	and	switch-based	lines.

FIGURE	4.23	Modified	IP	Catalog.

Listing	4.6	Switches	to	LEDs	Application	on	the	Basys3	Board	in	Verilog

Listing	4.7	Switches	to	LEDs	Application	on	the	Basys3	Board	in	VHDL

We	can	also	generate	the	same	project	using	the	VHDL	description	in	Listing
4.7.	Again,	all	steps	for	the	Verilog	description	should	be	applied	to	this	project
as	well.
The	same	project	can	be	implemented	on	the	Arty	board	as	well.	To	do	so,

modified	Verilog	and	VHDL	descriptions	are	as	in	Listings	4.8	and	4.9.	As	in
the	Basys3	board–based	application,	do	not	forget	to	add	the	Arty	XDC	file	to
the	project.

Listing	4.8	Switches	to	LEDs	Application	on	the	Arty	Board	in	Verilog

Listing	4.9	Switches	to	LEDs	Application	on	the	Arty	Board	in	VHDL

4.9	Summary
Vivado	is	a	design	platform	to	synthesize,	simulate,	and	implement	HDL

descriptions.	It	can	also	be	used	to	program	a	target	FPGA.	This	chapter
introduced	Vivado	such	that	it	can	be	used	in	realizing	digital	systems	in	the
following	chapters.	To	do	so,	we	started	from	scratch	and	developed	a	project
using	provided	Verilog	and	VHDL	descriptions.	At	this	stage,	the	reader	may
not	know	the	structure	of	the	description	provided.	Such	a	strategy	was
necessary	to	coherently	explain	the	working	principles	of	Vivado.	We	will
explain	how	these	descriptions	are	constructed	in	detail	in	Chap.	5.	Therefore,
we	kindly	ask	the	reader	to	focus	on	Vivado	usage	in	this	chapter.	The	final
stage	here	was	realizing	the	given	description	on	the	Basys3	or	Arty	board.
Afterward,	we	also	introduced	methods	on	IP	management	in	Vivado.	We	will
also	analyze	these	in	detail	in	the	following	chapters.

4.10	Exercises
4.1			Download	the	latest	version	of	Vivado	HL	WebPACK	edition	to	your
computer	and	install	it.
4.2			Create	an	empty	project;

a.	add	the	Verilog	description	in	Listing	4.1	to	the	project.
b.	synthesize	and	simulate	the	project.
c.	observe	simulation	results.

4.3			Create	an	empty	project;
a.	add	the	VHDL	description	in	Listing	4.2	to	the	project.
b.	synthesize	and	simulate	the	project.
c.	observe	simulation	results.

c.	observe	simulation	results.
4.4			Create	an	empty	project.	Use	Basys3	as	the	target	board;

a.	add	the	Verilog	description	in	Listing	4.5	to	the	project.
b.	add	the	constraint	file	for	the	Basys3	board	to	the	project.
c.	implement	the	project	and	generate	bitstream	to	program	the
FPGA.
d.	run	the	project	on	the	FPGA.

4.5			Repeat	Exercise	4.4	using	the	Arty	board.
4.6			Repeat	Exercise	4.4	using	the	VHDL	description	in	Listing	4.10.
4.7			Repeat	Exercise	4.6	using	the	Arty	board.

Listing	4.10			VHDL	Description	of	the	First	System	with	Switches	and	LEDs
as	Input	and	Output

CHAPTER	5

Introduction	to	Verilog	and	VHDL

Hardware	description	languages	help	us	formalizing	and	representing	a
digital	system	at	hand.	Hence,	it	can	be	implemented	on	a	target	FPGA	platform.
Two	popular	HDLs	are	Verilog	and	VHDL.	This	chapter	introduces	basics	of
both	HDLs.	We	will	explore	these	HDLs	in	detail	in	representing	digital	systems
in	the	following	chapters.	Although	we	provide	Verilog	and	VHDL	in	one
chapter,	we	strongly	suggest	the	reader	to	master	one	HDL	first,	then	learn	the
other.	Throughout	the	book,	we	give	precedence	to	Verilog	since	it	resembles	C
programming	language.	Therefore,	we	start	with	Verilog	fundamentals	next.
Then,	we	introduce	testbench	formation	in	Verilog.	Afterward,	we	handle
VHDL	concepts	in	the	same	order.	We	also	consider	adding	an	IP	block	to	a
project.

5.1	Verilog	Fundamentals
Verilog	is	the	first	HDL	we	will	be	using	to	describe	a	digital	system.

Therefore,	we	will	introduce	Verilog	fundamentals	with	basic	keywords	in	this
section.

5.1.1	Module	Representation

Let’s	analyze	this	structure	in	detail.	First,	the	module	should	have	a	unique
name	which	should	not	be	the	same	as	any	of	the	predefined	Verilog	keywords.

In	the	above	description,	we	set	the	name	as	module_name.	Second,	the	module
should	have	input	and	output	ports	assigned	to	it.	We	represent	these	ports	as
port_list	in	the	above	description.	The	port	list	does	not	have	a	specific	order.
Therefore,	input	and	output	ports	can	be	represented	in	any	order	within	the	list.
For	convenience,	we	suggest	representing	output	ports	first.	At	this	stage,
definition	of	the	module	is	done.	Next	comes	internal	structure	of	the	module.
Here,	we	first	define	port	elements	within	the	module.	Each	element	can	be
input,	output,	or	inout.	As	the	name	implies,	the	input	keyword	declares	that
the	related	port	will	get	data	from	outside	world.	The	output	keyword	declares
that	the	related	port	will	feed	data	to	outside	world.	The	inout	keyword	declares
that	the	related	port	can	be	used	for	both	input	and	output	purposes.	Then,	we
describe	the	digital	system.	This	is	indicated	by	statement	1,	statement	2,	and
statement	3	above.	It	is	important	to	remember	that	order	of	statements	is	not
important	in	the	description	since	they	will	be	represented	by	hardware	elements
in	the	FPGA.	Afterward,	we	close	the	module	by	keyword	endmodule.	Note	that
we	can	use	the	symbol	//	to	add	a	comment	to	the	Verilog	description.
To	understand	the	module	definition,	let’s	consider	the	first	Verilog

description	in	Listing	4.1.	As	a	reminder,	circuit	diagram	of	this	digital	system
has	been	given	in	Fig.	4.11.	As	can	be	seen	in	this	figure,	the	digital	system	has
two	input	ports	in1	and	in2.	It	also	has	two	output	ports	out1	and	out2.	Now,
let’s	focus	on	the	first	part	of	the	description	in	Listing	4.1	given	below.

As	can	be	seen	here,	the	module	name	for	this	description	is	first_system.
The	port	list	is	composed	of	out1,	out2,	in1,	in2.	Ports	in1	and	in2	are
defined	as	input	in	the	following	line.	Similarly,	ports	out1	and	out2	are
defined	as	output	in	the	next	line.
The	following	part	in	Listing	4.1	is	the	description	of	digital	system.	There	are

three	different	methods	of	modeling,	such	as	structural,	dataflow,	and
behavioral,	in	describing	a	digital	system	in	Verilog.	We	will	introduce	each
modeling	method	next.

5.1.1.1	Structural	Modeling
The	first	method	in	describing	a	digital	system	is	using	structural	modeling.	In

this	method,	each	element	to	be	used	in	the	description	statement	should	have
been	defined	under	Verilog	as	a	structure.	Since	logic	gates	are	extensively	used
in	Verilog	descriptions,	they	have	been	defined	beforehand.	Therefore,	this
description	method	is	also	called	gate-level	modeling.
Each	gate	is	represented	by	the	following	structure	in	this	method.	First,	gate

type	is	defined	by	the	corresponding	Verilog	keyword.	Then,	a	name	for	the	gate
is	assigned.	Note	that	name	assignment	is	not	mandatory.	Finally,	output	and
input	ports	for	the	gate	are	defined	within	parenthesis.	Therefore,	the	structural
model	of	a	logic	gate	will	be	as	gate_keyword	name	(port_list).	The	port	list
should	be	such	that	output	of	the	structure	is	defined	first.
Let’s	describe	the	digital	system	in	Listing	4.1	using	structural	modeling.	The

reader	can	also	consult	Fig.	4.11	for	this	purpose.	As	can	be	seen	in	this	figure,
four	gates	are	used	in	this	system	as	AND,	OR,	NOT,	and	XOR.	Corresponding
Verilog	keywords	for	these	are	and,	or,	not,	and	xor,	respectively.	Let’s	give	a
name	to	each	logic	gate	to	be	used	in	the	description	as	gate_and,	gate_or,
gate_not,	and	gate_xor,	respectively.	Using	these,	we	can	construct	the
structural	model.	There	is	one	issue	to	be	solved	in	describing	the	digital	system.
Inputs	of	the	XOR	gate	are	output	of	the	AND	and	OR	gates.	We	should	define
variables	using	the	Verilog	keyword	wire	to	make	this	connection.	In	fact,	the
user	can	remember	this	easily	as	if	we	are	adding	a	wire	between	logic	gates.
Based	on	these,	we	can	form	the	structural	model	of	the	digital	system	as	in
Listing	5.1.	As	can	be	seen	in	this	description,	the	first	system	is	defined	using
only	predefined	logic	elements.	To	emphasize	again,	these	elements	can	be
defined	in	any	order	in	Listing	5.1.

Listing	5.1	Structural	Model	of	the	First	System	in	Verilog

5.1.1.2	Dataflow	Modeling
The	second	method	in	describing	a	digital	system	in	Verilog	is	using	dataflow

modeling.	In	this	method,	the	relation	between	input	and	output	ports	is	formed
as	a	function.	Therefore,	this	description	method	is	also	called	functional
modeling.
The	main	keyword	in	dataflow	modeling	is	assign.	The	syntax	here	is	assign

output	=	function	of	inputs.	Output	in	this	representation	must	always	be	a
scalar	or	vector.	Here,	the	function	may	be	formed	by	logic	gate	representations.
As	in	structural	modeling,	we	will	only	consider	logic	gates	AND,	OR,	NOT,
and	XOR	here.	Corresponding	operators	to	be	used	in	dataflow	modeling	are	{&
,	|,	∼,	ˆ	}	respectively.
In	fact,	the	digital	system	in	Listing	4.1	has	been	described	by	dataflow

modeling	such	that	we	represented	each	logic	gate	input	and	output	as	a
function.	Then,	we	formed	dataflow	model	of	the	digital	system	as	in	Listing
5.2.	As	in	structural	modeling,	we	used	the	wire	keyword	in	this	description	to
connect	input	and	output	of	logic	gates.
Dataflow	modeling	allows	merging	functions,	which	leads	to	a	more	compact

representation.	Let’s	reconsider	the	description	in	Listing	5.2.	We	provide	the
merged	form	of	this	description	in	Listing	5.3.	As	can	be	seen	here,	output	out1
is	defined	in	one	merged	line.	Therefore,	wire	definitions	are	discarded	from	the
description.

Listing	5.2	Dataflow	Model	of	the	First	System	in	Verilog

Listing	5.3	Dataflow	Model	of	the	First	System	in	Merged	Form

5.1.1.3	Behavioral	Modeling
The	third	method	in	describing	a	digital	system	in	Verilog	is	using	behavioral

modeling.	In	this	method,	digital	system	at	hand	is	represented	by	its	behavior.
In	other	words,	Verilog	keywords	corresponding	to	conditional	and	recursive
statements	can	be	used	within	the	model.

In	behavioral	modeling,	statement	(or	statements)	to	be	executed	should	be
triggered	by	a	signal	(or	signals)	to	operate.	The	keyword	always	is	used	to
indicate	this	triggering	operation.	Once	the	signal	changes	its	state,	the	statement
is	executed.	If	there	is	more	than	one	statement	to	be	executed,	then	they	should
be	encapsulated	by	begin	and	end	keywords.	Hence,	syntax	for	this
representation	becomes	as	follows:

Here,	sensitivity_list	stands	for	triggering	signal(s).	The	sensitivity	list
can	be	formed	of	signals	separated	by	comma	or	combined	by	or	keyword.	If	the
behavioral	description	is	to	be	executed	for	any	input	changes,	then	*	sign	can	be
used	instead	of	the	sensitivity	list.	Here,	whenever	one	of	the	signals	in	the
sensitivity	list	changes	its	state,	the	behavioral	description	is	executed.	Again,
order	of	statements	is	not	important	in	behavioral	modeling.
One	other	important	Verilog	keyword	for	behavioral	modeling	is	initial.

Via	this	keyword,	an	initial	block	can	be	formed	which	is	executed	at	time	zero.
Syntax	of	the	initial	block	is	as	follows:

Let’s	describe	the	digital	system	in	Listing	4.1	using	behavioral	modeling.
Behavior	of	the	system	will	change	when	the	first	or	second	input	changes.
Therefore,	at	the	beginning	of	the	always	block,	the	sensitivity	list	will	consist	of
inputs	in1	and	in2.	We	can	represent	the	relation	between	input	and	output	of
the	system	as	in	dataflow	modeling.	However,	the	assign	keyword	will	not	be
used	in	behavioral	modeling.	Since	there	is	more	than	one	statement	to	be
executed,	they	are	encapsulated	within	begin	and	end	keywords.	As	a	result,
behavioral	model	of	the	first	system	will	be	as	in	Listing	5.4.

Listing	5.4	Behavioral	Model	of	the	First	System	in	Verilog

We	should	take	a	closer	look	at	the	description	in	Listing	5.4.	The	always
keyword	executes	the	beneath	description	block	(encapsulated	by	begin	and	end
keywords)	whenever	in1	or	in2	changes.	If	there	is	no	change	in	these	variables,
output	will	not	be	provided	by	the	system.	Therefore,	we	have	to	save	previous
output	values.	This	can	be	done	by	the	Verilog	keyword	reg.	We	used	this
keyword	to	keep	the	previous	value	of	out1	and	out2	in	Listing	5.4.	We	also
initialized	these	variables	to	logic	level	zero	using	the	initial	keyword.
There	are	two	assignment	types	in	behavioral	modeling.	These	are	called

blocking	and	nonblocking.	Statements	having	blocking	assignment	are	executed
one	by	one	in	sequential	order.	Therefore,	as	the	name	implies,	each	assignment
blocks	the	execution	of	the	next	in	hierarchy.	Operator	for	the	blocking
assignment	is	=.	Statements	having	nonblocking	assignment	are	executed
concurrently.	Therefore,	they	don’t	block	each	other.	Operator	for	the
nonblocking	assignment	is	<=.
Let’s	consider	a	simple	example	for	blocking	and	nonblocking	assignments.

Assume	that	there	is	a	Verilog	module	with	output	array	y	having	six	elements.

Input	of	the	module	is	represented	by	x.	Within	the	always	block,	let’s	describe
assignments	as	follows:

Here,	the	first	three	assignments	are	of	blocking	type.	Next	three	assignments
are	of	nonblocking	type.	When	input	x	becomes	logic	level	one,	blocking
assignments	result	as	y[0]=1,	y[1]=1,	and	y[2]=1.	In	other	words,	input	first
affects	output	y[0].	Then,	outputs	affect	each	other	in	sequential	order.	On	the
other	hand,	nonblocking	assignments	will	be	as	y[3]=1,	y[4]=0,	and	y[5]=0.
Hence,	input	only	affects	the	first	out-put	y[3].	Remaining	outputs	do	not
change	their	initial	value.	This	is	because	of	the	concurrent	operation	such	that
all	output	values	are	assigned	at	once.	Hence,	the	new	value	of	output	y[3]
could	not	affect	remaining	outputs.
We	provide	the	complete	Verilog	description	of	the	above	example	in	Listing

5.5.	Final	simulation	results	for	this	description	will	be	as	in	Fig.	5.1.	Blocking
and	nonblocking	assignment	results	are	clearly	seen	in	this	figure.

FIGURE	5.1	Simulation	results	for	blocking	and	nonblocking	assignments.

It	is	strongly	suggested	in	literature	that	blocking	assignments	should	be	used
in	combinational	circuits.	Nonblocking	assignments	should	be	used	in	sequential
circuits.	Hence,	Verilog	descriptions	till	Chap.	9	will	only	use	blocking
assignments	in	behavioral	models.	Starting	from	Chap.	9,	nonblocking
assignments	will	be	used	in	behavioral	models.	There	is	also	a	good	reference	by
Cummins	[24]	on	the	usage	of	blocking	and	nonblocking	assignments	in
Verilog.	We	strongly	suggest	the	reader	to	check	this	reference	for	in-depth
understanding	of	this	concept.

5.1.2	Timing	and	Delays	in	Modeling
Vivado	allows	adding	simulation	timings	in	Verilog	descriptions.	Moreover,	if

a	blank	Verilog	file	is	to	be	opened,	Vivado	adds	the	first	line	automatically	as
’timescale	1ns	/	1ps.	These	are	the	default	timing	values	such	that	the	first
one(1ns)	indicates	the	reference	time	unit.	Whenever	a	time	value	is	added	to	the
Verilog	description,	it	will	be	in	the	order	of	one	nanosecond.	The	second	timing
value	(1ps)	indicates	the	smallest	precision	that	can	be	achieved.	Hence,	the
default	smallest	precision	in	simulation	is	one	picosecond.	Again,	these	values
will	be	of	use	during	simulation.	They	will	have	no	effect	in	the	actual	FPGA
realization	step.

Listing	5.5	An	Example	on	Blocking	and	Nonblocking	Assignments

Up	to	this	point,	we	did	not	take	physical	characteristics	of	logic	gates	into
account	in	simulation.	In	other	words,	we	assumed	all	delay	times	to	be	zero
within	logic	gates.	If	the	user	wants	to	obtain	accurate	results	(especially	in
timing	diagrams)	of	the	implemented	digital	system,	then	delay	values	should	be
added	to	the	Verilog	description.	These	can	be	done	in	connection	with	the
reference	time	unit.
There	are	three	delay	types	that	can	be	added	to	a	digital	device	in	Verilog.

These	are	rise	delay,	fall	delay,	and	turn-off	delay.	The	rise	delay	indicates	the
transition	time	needed	from	any	logic	value	to	logic	level	one.	The	fall	delay
indicates	the	transition	time	needed	from	any	logic	value	to	logic	level	zero.	The
turn-off	delay	indicates	the	transition	time	needed	from	any	logic	value	to	high
impedance.	Next,	we	provide	an	example	on	the	usage	of	these	delay	times	in
structural	modeling.

In	the	first	line,	the	delay	value	is	specified	as	#(5).	This	indicates	that	all
delay	values	are	five	time	units.	If	the	default	reference	time	is	used,	this
corresponds	to	5	ns.	In	the	second	line,	two	delay	values	are	specified	as	#(3,

4).	Here,	the	rise	delay	is	taken	as	three	time	units.	The	fall	delay	is	taken	as	four
time	units.	The	turn-off	delay	is	taken	as	the	minimum	of	these	two	values.
Hence,	it	becomes	three	time	units.	In	terms	of	the	default	reference	time,	these
values	become	3	ns,	4	ns,	and	3	ns,	respectively.	In	the	third	line,	three	delay
values	are	specified	as	#(3,	4,	5).	Here,	the	rise	delay	is	taken	as	three	time
units.	The	fall	delay	is	taken	as	four	time	units.	The	turn-off	delay	is	taken	as
five	time	units.	Again,	in	terms	of	the	reference	time,	these	values	will	be	as	3
ns,	4	ns,	and	5	ns,	respectively.
We	can	also	apply	delay	values	in	dataflow	modeling.	Such	an	example	is

assign	#10	and_out	=	in1	&	in2.	Here,	#10	indicates	that	the	assignment	will
be	performed	by	a	10-time-unit	delay.	This	will	correspond	to	10-ns	delay	with
respect	to	the	default	reference	time.
Let’s	apply	delay	to	the	dataflow	model	of	the	first	system	in	Listing	5.3.

Delay	is	applied	such	that	out2	is	calculated	with	a	20	time-unit	lag.	We	provide
the	modified	description	in	Listing	5.6.
We	can	simulate	the	Verilog	description	in	Listing	5.6	using	methods	in	Sec.

4.4.	Obtained	simulation	result	will	be	as	in	Fig.	5.2.	As	can	be	seen	in	this
figure,	the	second	output	(out2)	has	a	20-ns	delay.

FIGURE	5.2	Simulation	results	after	adding	a	delay	of	20	ns	to	the	second	output.

Listing	5.6	Verilog	Description	of	the	First	System	After	Adding	a	Delay

5.1.3	Hierarchical	Module	Representation
Projects	we	have	considered	up	to	this	point	contain	only	one	module.	In

larger	projects,	the	number	of	modules	may	be	more	than	one.	In	this	section,	we
will	show	how	a	project	with	more	than	one	module	can	be	handled.
Let’s	reconsider	dataflow	model	of	the	first	system	in	Listing	5.2.	We	can

represent	the	same	description	as	a	combination	of	three	modules	such	that	AND
and	OR	gates	are	described	in	different	modules.	Let’s	call	these	as	and_module
and	or_module,	respectively.	These	should	be	formed	as	valid	modules	with
their	input/output	ports	and	descriptions.	We	should	instantiate	the	and_module
and	or_module	in	the	top	module	first_system.	This	can	be	done	as	if
structural	modeling	is	used.	In	other	words,	the	and_module	should	be
represented	within	the	first_system	module	as	and_module
instantiation_name	(port_list).
There	are	two	options	in	forming	port	list	correspondence	between	module	to

be	instantiated	and	the	top	module	using	it.	The	first	one	is	using	locations.	Here,
the	port	list	order	in	the	top	module	and	instantiation	should	be	the	same.	The
second	method	in	forming	the	port	list	correspondence	is	using	the	declaration
.sub_module_name	(top_module_name).	Here,	port	in	the	module	to	be
instantiated	is	declared	as	sub_module_name.	The	corresponding	port	in	the	top
module	is	declared	as	(top_	module_name).	This	operation	should	be	done	for
all	input/output	ports.	We	will	use	both	declarations	throughout	the	book,
although	the	second	one	should	be	picked	whenever	possible.
Based	on	the	first	port	list	declaration,	hierarchical	representation	of	the	first

system	will	be	as	in	Listing	5.7.	Here,	instantiation	name	for	the	and_module	and
or_module	is	U1	and	U2,	respectively.
Schematic	view	of	the	modular	design	(under	the	RTL	analysis	option)	in

Listing	5.7	will	be	as	in	Fig.	5.3a.	As	can	be	seen	in	this	figure,	the	and_module
and	or_module	are	represented	as	black	boxes.	As	the	“+”	sign	is	pressed	on
these	boxes,	the	RTL	representation	will	be	as	in	Fig.	5.3b.	In	this	figure,	black
boxes	are	represented	by	the	actual	description	of	each	module.	Therefore,	it
becomes	easy	to	analyze	the	overall	description.

FIGURE	5.3	RTL	schematic	view	of	the	first	system	in	hierarchical	module	representation.

Vivado	allows	hierarchical	module	representation	to	be	composed	of	more
than	one	source	file.	Therefore,	larger	projects	can	be	composed	of	smaller

source	files	merged	in	Vivado.	We	can	show	how	this	method	works	as	follows.
Let’s	reconsider	modular	description	of	the	first	system	in	Listing	5.7.	This	file
can	be	partitioned	into	two	parts	such	that	the	first	one	holds	the	top	module
(first_system).	The	second	one	holds	and_module	and	or_module.	We	can
represent	these	two	source	files	as	in	Listings	5.8	and	5.9.	These	two	should	be
added	to	the	project	as	source	files.	Then,	Vivado	merges	them	and	forms	the
final	description.

Listing	5.7	Verilog	Description	of	the	First	System	in	Hierarchical	Module
Representation

5.2	Testbench	Formation	in	Verilog
Characteristics	of	a	digital	system	can	be	analyzed	in	Vivado	by	using	a

testbench.	Here,	we	will	explain	the	structure	of	a	testbench	file,	taking	the	one
in	Listing	4.3	as	an	example.	Note	that	we	provide	the	testbench	file	for	each
Verilog	description	considered	in	this	book	on	a	companion	website,
www.mhprofessional.com/1259837904.	Therefore,	we	strongly	suggest	that	the
reader	visit	this	website.	Finally,	more	information	on	Verilog	testbench
formation	can	be	found	in	[25].

5.2.1	Structure	of	a	Verilog	Testbench	File
A	Verilog	testbench	file	is	composed	of	five	parts	as	follows:

•	Testbench	module	declaration
•	Input/output	port	declaration
•	Instantiation	of	the	unit	under	test	(UUT)
•	Providing	input	to	the	UUT
•	Displaying	test	results

Let’s	explain	these	parts	taking	the	testbench	file	in	Listing	4.3	as	an	example.
The	testbench	is	itself	a	Verilog	module.	Therefore,	it	needs	valid	module	and

input/output	port	declarations.	This	is	the	first	step	in	testbench	formation.	These
declarations	are	done	as	follows	in	Listing	4.3.

Listing	5.8	Verilog	Description	of	the	First	System-the	Top	Module

http://www.mhprofessional.com/1259837904

Listing	5.9	Verilog	Description	of	the	First	System–the	Supplement	File

Here,	first	the	simulation	timing	value	is	declared	by	the	timescale	keyword.
Then,	the	testbench	module	is	declared	as	module	first_system_tb.	We
specifically	assigned	such	a	name	to	the	testbench	module	to	associate	it	with	the
top	module	to	be	tested.	The	reader	is	free	to	choose	any	valid	name	here.	Next,
input	and	output	ports	of	the	testbench	module	are	declared	as	reg	in1t,	in2t
and	wire	out1t,	out2t.	Again,	the	reader	can	pick	any	valid	name	for	each
input	or	output	port	in	the	testbench	module.
The	second	step	in	testbench	formation	is	associating	the	module	to	be	tested

(unit	under	test)	with	the	testbench	module.	This	is	done	by	instantiation.	The

related	part	in	Listing	4.3	is	as	follows:

Here,	as	in	hierarchical	module	declaration,	the	module	to	be	tested	(for	our
case	first_	system)	is	instantiated	in	the	testbench	module	with	the	name	UUT.
Then,	each	port	in	the	testbench	module	and	the	module	to	be	tested	are
associated	(or	connected)	such	as	.out1(out1t).	Here,	the	port	in	the	module	to
be	tested	is	declared	as	.out1.	The	corresponding	port	in	the	testbench	module	is
declared	as	(out1t).	This	operation	is	done	for	all	input/output	ports.
The	third	step	in	testbench	formation	is	providing	input	to	the	UUT.	The

related	part	in	Listing	4.3	is	as	follows:

Here,	testbench	input	ports	(in1t	and	in2t)	are	initialized	first.	Then,	a	delay
of	100	ns	is	added	by	the	command	#100.	This	delay	is	added	such	that	the
module	to	be	tested	is	reset	properly.	Otherwise,	some	undesired	effects	may
occur	during	simulation.	Next,	input	values	are	fed	to	the	UUT.	In	Listing	4.3,
this	is	done	in	two	lines	as	follows.	The	first	line	contains	the	command	repeat
(4).	This	indicates	that	the	following	line	will	be	repeated	four	times.	The
second	line	contains	the	command	#100	{	in1t,in2t	}	=	{	in1t,in2t	}	+	1’b1.
This	indicates	that	inputs	will	be	incremented	one	by	one	sweeping	the	pattern
00,	01,	10,	and	11.	Transition	between	each	input	combination	is	done	after	a
100-ns	delay.	We	will	explain	Verilog	data	formats	in	these	lines	in	Chap.	6.
We	can	import	input	test	signals	from	an	existing	text	file.	The	testbench	file

in	Listing	4.3	should	be	modified	as	in	Listing	5.10	for	this	purpose.	Here,	a	text
file	is	opened	by	the	attribute	initial	$readmemb.	File	entries	are	saved	in

ROM.	Afterward,	file	entries	are	read	and	processed	line	by	line	from	ROM.	We
will	provide	more	information	on	this	issue	in	Sec.	9.5.

5.2.2	Displaying	Test	Results
The	testbench	module	is	constructed	following	steps	in	previous	section.	The

reader	has	two	options	to	observe	simulation	results	in	Vivado.	The	first	one	is
through	input/output	waveforms	as	explained	in	Sec.	4.4.	This	is	a	valid	option
and	can	be	used	in	most	tests.
The	second	option	in	observing	output	of	the	test	is	adding	specific	display

commands	such	that	output	can	be	observed	through	Vivado’s	Tcl	console.	The
related	optional	part	in	Listing	4.3	is	as	follows:

Here,	the	display	function	prints	the	string	fed	to	it.	The	monitor	function
prints	variables	fed	to	it.	The	first	part	of	this	function	handles	formatting.
Hence,	\	t%b	stands	for	“add	tab	and	represent	the	value	in	binary	form.”	The
corresponding	variable	to	be	displayed	is	provided	in	the	second	part	of	the
function	as	in1t.	All	input	and	output	ports	are	tabulated	this	way.	Therefore,
whenever	a	change	in	input	occurs,	it	is	displayed	on	Vivado’s	Tcl	console.	The
console	output	will	be	as	in	Fig.	5.4	for	the	testbench	in	Listing	4.3.

FIGURE	5.4	Simulation	results	observed	in	Vivado’s	Tcl	console.

Listing	5.10	The	Testbench	File	Reading	Input	Signals	from	a	Text	File

5.3	VHDL	Fundamentals

VHDL	is	the	second	HDL	we	will	be	using	to	describe	a	digital	system.
Therefore,	we	will	introduce	VHDL	fundamentals	in	this	section.	As	in	Verilog,
we	will	introduce	the	remaining	VHDL	keywords	in	connection	with	related
digital	design	concepts	in	the	following	chapters.

5.3.1	Entity	and	Architecture	Representations
A	digital	system	should	be	declared	in	two	parts	in	VHDL.	The	first	part

includes	the	entity	declaration	which	defines	input	and	output	characteristics	of
the	system	to	be	implemented.	The	structure	of	the	entity	part	will	be	as	follows:

Here,	system_name	is	the	name	assigned	to	the	system	to	be	described.	The
keyword	port	defines	actual	ports	of	the	device.	Each	port	entry	will	have	a
unique	name	indicated	by	port_name.	A	port_mode	can	be	in,	out,	or	inout.	As
the	name	implies,	the	in	keyword	declares	that	the	related	port	will	get	data	from
outside	world.	The	out	keyword	declares	that	the	related	port	will	feed	data	to
outside	world.	The	inout	keyword	declares	that	the	related	port	can	be	used	for
both	input	and	output	purposes.	VHDL	requires	variable	and	port	types	to	be
used	in	entity	declaration	to	be	strongly	defined.	Therefore,	port_type	should	be
declared	within	library_elements	included	to	the	design	by	library	and	use
keywords.
Second	part	of	digital	system	declaration	defines	its	architecture.	This	is

done	as	follows:

Here,	the	user	should	give	a	specific	name	to	architecture	of	the	digital	system
as	architecture_name.	The	system_name	defined	in	the	entity	part	should	also
be	used	in	architecture	definition.	Then,	variable,	signal,	constant,	and
component	declarations	should	be	made.	The	first	three	of	these	are	related	to
data	definitions	and	assignments	within	the	design.	These	should	have	valid
types	defined	in	the	included	library_elements	in	the	entity	declaration.	The
component	declaration	allows	hierarchical	structural	representation	definition	to
be	considered	in	detail	in	Sec.	5.3.5.	Finally,	system	description	is	done	within
the	architecture	part.	This	is	indicated	by	statement	1,	statement	2,	and
statement	3	above.	It	is	important	to	remember	that	the	order	of	statements	is
not	important	in	the	description	since	they	will	be	represented	by	hardware
elements	in	an	FPGA.	Note	that	we	can	use	the	symbol	--	to	add	comment	to	the
VHDL	description.
Next,	we	will	consider	the	entity	and	architecture	parts	on	an	example.

Therefore,	let’s	revisit	the	VHDL	description	in	Listing	4.2.	The	entity	part	of
this	declaration	is	as	follows:

Here,	the	system	has	two	input	ports	as	in1	and	in2.	It	also	has	two	outputs	as

out1	and	out2.	We	deliberately	set	the	names	of	input	and	output	ports	as	in	the
Verilog	description	in	Listing	4.1.	Hence,	the	reader	can	form	a	correspondence
between	them	easily.	In	Listing	4.2,	the	library	used	in	operation	is	picked	as
ieee.	Within	this	library,	all	types	defined	under	the	ieee.std_logic_1164
subset	are	imported.	This	allows	using	the	std_logic	type	which	can	represent
binary	values	such	as	logic	level	zero	and	one.	We	will	evaluate	this	operation	in
detail	in	Chap.	6.	As	for	now,	please	accept	the	provided	representation	as	it	is.
The	only	remaining	part	in	the	above	VHDL	description	is	representation	of

the	digital	system.	In	this	book,	we	will	only	consider	dataflow	and	behavioral
models	in	VHDL.	Note	that	some	definitions	in	these	models	may	overlap.	We
will	introduce	each	modeling	method	next.

5.3.2	Dataflow	Modeling
The	first	method	to	be	considered	in	describing	a	digital	system	in	VHDL	is

using	dataflow	modeling.	In	this	method,	the	relation	between	input	and	output
ports	is	formed	by	a	function	as	in	Verilog.	Syntax	in	this	function	representation
is	output	<=	function	of	inputs.
The	digital	system	described	in	Listing	4.2	has	been	formed	in	terms	of

dataflow	modeling.	There,	we	named	the	architecture	as	dataflow_model.	The
system	name	defined	in	the	entity	declaration	has	also	been	used	in	the
architecture	definition	as	first_system.	We	used	logic	gates	AND,	OR,	NOT,
and	XOR	within	the	architecture	declaration.	Corresponding	VHDL	keywords
for	these	are	and,	or,	not,	xor,	respectively.	For	completeness,	let’s	provide	the
dataflow	model	of	this	system	in	Listing	5.11.

Listing	5.11	Dataflow	Model	of	the	First	System	in	VHDL

5.3.3	Behavioral	Modeling
The	second	method	in	describing	a	digital	system	in	VHDL	is	using

behavioral	modeling.	As	in	Verilog,	the	digital	system	at	hand	is	represented	by
its	behavior	in	this	method.	In	other	words,	VHDL	keywords	corresponding	to
conditional	and	recursive	statements	can	be	used	within	this	model.
In	behavioral	modeling,	statement(s)	to	be	executed	should	be	triggered	by	a

signal	(or	signals)	to	operate.	The	keyword	process	is	used	to	indicate	this
triggering	operation.	Once	the	signal	changes	its	state,	the	statement(s)	is
executed.	Syntax	for	this	representation	becomes	as	follows:

Here,	the	sensitivity_list	stands	for	the	triggering	signal(s).	In	VHDL,	the
sensitivity	list	can	be	formed	of	signals	separated	by	comma	only.	Whenever	one
of	the	signals	in	the	sensitivity	list	changes	its	state,	the	behavioral	description	is
executed.	The	process	may	have	its	own	declarations	which	can	be	placed	before
the	begin	keyword.	Then,	the	behavioral	model	is	encapsulated	by	begin	and

end	process	keywords.	To	note	again,	the	order	of	statements	is	not	important
in	behavioral	modeling.
Let’s	describe	the	digital	system	in	Listing	4.2	using	behavioral	modeling.

Behavior	of	the	system	will	change	when	the	first	or	second	input	changes	its
value.	Therefore,	the	sensitivity	list	for	the	process	will	consist	of	inputs	in1	and
in2.	We	can	represent	the	relation	between	inputs	and	outputs	of	the	system
similar	to	dataflow	modeling.	As	a	result,	the	behavioral	model	of	the	first
system	will	be	as	in	Listing	5.12.	Here,	architecture	of	the	digital	system	is
named	as	behavioral_model.
Dataflow	and	behavioral	models	share	similar	structures	in	VHDL.	Their

main	difference	is	the	process	keyword	used	in	dataflow	modeling.	Therefore,
we	will	provide	either	the	dataflow	or	behavioral	model	from	this	point	based	on
its	appropriateness	in	describing	the	digital	system	at	hand.

Listing	5.12	Behavioral	Model	of	the	First	System	in	VHDL

5.3.4	Timing	and	Delays	in	Modeling
As	in	Verilog,	we	can	add	delay	times	to	descriptions	in	VHDL.	This	leads	to

precise	simulation	results	especially	in	timing	diagrams.	Again,	these	values	will
be	of	use	during	simulation.	They	will	have	no	effect	in	the	actual	FPGA
realization	step.

Different	from	Verilog,	delay	times	can	be	added	to	a	VHDL	description
using	the	keyword	after.	Let’s	assume	that	we	want	to	add	a	20-ns	delay	to	the
second	output	(out2)	in	Listing	4.2.	The	modified	description	line	will	be	out2
<=	not	in1	after	20	ns.	As	this	modification	is	done	and	simulation	of	the
description	is	run,	the	same	waveform	in	Fig.	5.2	should	be	observed.

5.3.5	Hierarchical	Structural	Representation
VHDL	allows	structural	hierarchical	representation	for	large	projects.	As	in

Verilog,	the	idea	here	is	decomposing	the	project	into	subparts.	Hence,	it
becomes	manageable.
Let’s	reconsider	dataflow	model	of	the	first	system	in	Listing	5.11.	As	in	Sec.

5.1.6,	we	can	represent	this	description	as	a	combination	of	three	parts	such	that
the	AND	and	OR	gates	are	represented	separately.	Let’s	call	these	as
and_module	and	or_module,	respectively.	These	should	be	formed	with	their
valid	entity	and	architecture	descriptions.	Then,	we	should	instantiate	the
and_module	and	or_module	in	the	top	(main)	module	first_system.	This	can	be
done	by	using	component	declarations.
The	component	declaration	should	be	made	in	architecture	part	of	the	top

module	with	the	following	structure:

This	definition	should	be	made	at	the	beginning	of	the	architecture	part.	Then,
instantiation	can	be	done	by	using	the	below	structure:

There	are	two	options	in	forming	the	port	list	correspondence.	The	first	one	is
using	locations.	Here,	the	port	list	order	in	the	main	entity	declaration	and
instantiation	should	be	the	same.	Although	this	is	a	valid	option,	it	may	cause
problems	in	implementation	if	the	port	order	is	not	followed	correctly.	The
second	method	in	forming	the	port	list	correspondence	is	using	the	declaration
component_port_name	=>	main_port_name.	Here,	a	correspondence	is	formed
between	each	port	in	the	component	and	main	entity	declarations.	Based	on
these,	hierarchical	structural	representation	of	the	first	system	will	be	as	in
Listing	5.13.	Here,	the	instantiation	name	for	the	and_module	and	or_	module
are	U1	and	U2,	respectively.	Schematic	view	of	this	hierarchical	representation
(under	the	RTL	analysis	option)	will	be	as	in	Fig.	5.3.	Properties	of	this	figure

explained	beforehand	are	also	valid	here.
Vivado	allows	hierarchical	structural	representation	to	be	composed	of	more

than	one	source	file.	Therefore,	larger	projects	can	be	composed	of	smaller
source	files	merged	in	Vivado.	We	can	show	how	this	method	works	as	follows.
Let’s	reconsider	modular	description	of	the	first	system	in	Listing	5.13.	This	file
can	be	partitioned	into	two	parts	such	that	the	first	one	holds	the	top	module
(first_system);	the	second	one	holds	the	and_module	and	or_module.	We	can
represent	these	two	files	as	in	Listings	5.14	and	5.15.	These	two	should	be	added
to	the	project	as	source	files.	Then,	Vivado	merges	them	and	forms	the	final
description.
The	supplement	file	in	Listing	5.15	can	be	represented	as	a	library	in	VHDL.

This	can	be	done	by	the	keyword	package.	Afterward,	the	library	can	be	called
in	the	main	file	by	the	library	and	use	keywords.	For	more	detail	on	this	issue,
please	see	[26].
There	are	two	more	methods	which	can	be	used	in	hierarchical	structural

representation.	These	are	function	and	procedure	methods.	For	more
information	on	these	methods,	please	see	[27].

5.4	Testbench	Formation	in	VHDL
A	VHDL	description	can	be	analyzed	via	its	testbench	in	Vivado.	Therefore,

we	will	explore	the	structure	of	a	testbench	file,	taking	the	one	in	Listing	4.4	as
an	example.	We	provide	the	testbench	file	for	each	VHDL	description	(as	in
Verilog)	considered	in	this	book	on	the	companion	website
www.mhprofessional.com/1259837904.	Therefore,	we	strongly	suggest	that	the
reader	visit	it.	Finally,	more	information	on	VHDL	testbench	formation	can	be
found	in	[25].

5.4.1	Structure	of	a	VHDL	Testbench	File
A	VHDL	testbench	file	is	composed	of	five	parts	as	follows:

•	Testbench	entity	and	architecture	declarations
•	Input/output	port	declaration
•	Instantiation	of	the	unit	under	test	(UUT)
•	Providing	input	to	the	UUT
•	Displaying	test	results

Listing	5.13	VHDL	Description	of	the	First	System	in	Hierarchical	Structural
Representation

http://www.mhprofessional.com/1259837904

Listing	5.14	VHDL	Description	of	the	First	System–the	Top	Module

These	parts	are	almost	the	same	as	in	Sec.	5.2.	Let’s	explain	them	taking	the
testbench	file	in	Listing	4.4	as	an	example.
The	testbench	is	itself	a	VHDL	description.	Therefore,	it	needs	valid	entity

and	architecture	declarations.	This	is	the	first	step	in	testbench	formation.	These
declarations	are	done	as	follows	in	Listing	4.4:

Listing	5.15	VHDL	Description	of	the	First	System-the	Supplement	File

Here,	the	testbench	is	declared	as	first_system_tb.	We	specifically	assigned

such	a	name	to	associate	it	with	the	architecture	to	be	tested.	The	reader	is	free	to
choose	any	valid	VHDL	name	here.	Entity	declaration	of	the	testbench	is	empty
since	it	will	not	get	any	input	or	feed	output.	Signals	to	be	used	within	the
testbench	file	are	declared	next.	These	are	in1t,	in2t,	out1t,	and	out2t.	Note
that	these	signals	are	initialized	while	being	declared.	More	information	on	this
operation	can	be	found	in	Chap.	6.
The	second	step	in	testbench	formation	is	associating	the	description	to	be

tested	(unit	under	test)	with	the	testbench	module.	This	is	done	by	instantiation.
The	related	part	in	Listing	4.4	is	as	follows:

Here,	as	in	hierarchical	structural	representation,	unit	to	be	tested	(for	our	case
first_system)	is	instantiated	in	testbench	with	the	name	UUT.	Then,	each	port	in
the	testbench	and	the	unit	to	be	tested	are	associated	(or	connected)	such	as	in1
=>	in1t.	Here,	the	port	in	unit	to	be	tested	is	declared	as	in1.	The	corresponding
port	in	the	testbench	is	declared	as	in1t.	This	is	done	for	all	input/output	ports.
The	third	step	in	testbench	formation	is	providing	input	to	the	UUT.	The

related	part	in	Listing	4.4	is	as	follows:

Here,	testbench	input	ports	(in1t	and	in2t)	are	set	to	zero	first.	Then,	a	delay
of	100	ns	is	applied	by	the	command	line	wait	for	100	ns.	This	delay	is	added
such	that	the	description	to	be	tested	is	reset	properly.	Otherwise,	some
undesired	effects	may	occur	during	simulation.	Afterward,	different	input
combinations	are	fed	to	UUT.	Transition	between	each	input	combination	is
done	after	a	100-ns	delay.	We	will	explain	VHDL	data	formats	in	these	lines	in
detail	in	Chap.	6.
VHDL	allows	receiving	input	signals	from	an	existing	text	file.	The	testbench

file	in	Listing	4.4	should	be	modified	as	in	Listing	5.16	for	this	purpose.	Here,	a
text	file	is	opened	by	file	file_input:	text	open	read_mode	is.	Afterward,
file	entries	are	read	line	by	line.

5.4.2	Displaying	Test	Results
The	testbench	in	VHDL	is	constructed	using	steps	in	the	previous	section.	The

reader	can	observe	simulation	results	through	input/output	waveforms	as
explained	in	Sec.	4.4.	Waveforms	for	the	testbench	in	Listing	4.4	will	be	as	in
Fig.	4.13.
Similar	to	Verilog,	VHDL	provides	an	explicit	method	to	display	results	on

Vivado’s	Tcl	console.	The	related	optional	part	in	Listing	4.4	will	be	as	follows:

Here,	the	report	attribute	prints	the	string	fed	to	it.	The	std_logic’image
function	prints	the	variable	(in	standard	logic	form)	fed	to	it.
VHDL	also	allows	writing	simulation	results	to	a	text	file.	The	testbench	file

in	Listing	4.4	should	be	modified	as	in	Listing	5.17	for	this	purpose.	Operations
here	are	similar	to	the	ones	in	reading	input	data	from	a	text	file.

5.5	Adding	an	Existing	IP	to	the	Project
We	can	add	an	existing	IP	block	to	the	project.	The	beauty	of	using	IP	blocks

is	that	the	HDL	used	for	generating	the	IP	is	not	important.	In	other	words,	we
can	use	an	IP	generated	by	VHDL	in	a	Verilog	project	or	vice	versa.	Therefore,
this	option	allows	us	merging	Verilog	and	VHDL	descriptions	in	the	same
project.	Let’s	analyze	how	this	can	be	done	next.

5.5.1	Adding	an	Existing	IP	in	Verilog
Let’s	start	with	the	custom-generated	IP	block	in	Sec.	4.7.	There,	we	have

generated	the	IP	block	for	the	first	system	in	Verilog.	Now,	let’s	add	this	IP	to	a
new	project.	The	first	step	here	is	adding	the	previously	generated	custom	IP	to
IP	catalog	of	the	current	project.	To	do	so,	we	should	first	locate	the	custom	IP
files.	Then,	we	should	select	the	Interfaces	tab	in	the	IP	Catalog.	We	should
press	the	IP	settings	button	(the	last	one)	there.	In	the	opened	window,	we	should
select	the	Repository_Manager	in	the	IP	tab.	Here,	we	should	add	the	IP
repository	by	pressing	the	green	+	sign.	Here,	we	should	use	location	of	the

custom	IP	to	be	added.	Then,	the	window	should	look	like	as	in	Fig.	5.5.

FIGURE	5.5	Adding	a	custom	IP	to	the	repository.

After	adding	the	custom	IP	to	the	repository,	it	will	be	available	in	the	IP
catalog	as	in	Fig.	4.23.	To	add	it	to	the	project,	we	should	double	click	on	it.	A
new	window	appears	as	in	Fig.	5.6.	Here,	the	first	system	is	actually	shown	as	a
black	box	with	input	and	output	ports.	As	the	OK	button	is	pressed	in	Fig.	5.6,	a
new	window	appears	summarizing	which	files	will	be	generated.	Here,	we
should	select	the	“Synthesis	Option”	as	“out	of	context	per	IP.”	As	we	press	the
Generate	button	in	this	window,	the	IP	block	will	be	added	to	the	project.

FIGURE	5.6	IP	block	representation	of	the	first	system.

We	can	observe	the	included	files	to	the	project	from	the	sources	→	IP
sources	section	as	in	Fig.	5.7.	Here,	there	are	two	files	of	interest	under	the
Instantiation	Template	section.	These	are	first_system_0.vho	and
first_system_0.veo.	These	are	instantiation	blocks	to	be	used	in	the	top
module.	The	first	file	is	for	use	in	a	Verilog	description.	The	second	file	is	for
use	in	a	VHDL	description.

FIGURE	5.7	IP	block	representation	in	the	IP	sources	section.

The	important	step	here	is	adding	the	IP	to	the	top	module	of	the	project	by
instantiating	it.	Assume	that	we	have	generated	a	top	module	in	Verilog	and
added	it	to	the	project.	Then,	we	can	add	the	instantiation	template	to	the	top
module	as	in	Listing	5.18.
The	RTL	schematic	of	this	description	will	be	as	in	Fig.	5.8.	As	can	be	seen	in

this	figure,	the	IP	block	is	represented	by	a	black	box	in	the	RTL	schematic.

FIGURE	5.8	RTL	schematic	of	the	top	module	after	adding	the	IP	block.

Listing	5.16	The	Testbench	File	Reading	Input	Signals	from	a	Text	File

Listing	5.17	The	Testbench	File	Reading	Input	Signals	from	a	Text	File	and
Writing	Simulation	Results	to	Another	Text	File

Listing	5.18	Adding	the	IP	Block	of	the	First	System	to	the	Top	Module	in
Verilog

Listing	5.19	Adding	the	IP	Block	of	the	First	System	to	the	Top	Module	in
VHDL

5.5.2	Adding	an	Existing	IP	in	VHDL
Next,	we	add	the	IP	block	of	the	first	system	to	a	VHDL	description.	We	will

follow	the	same	steps	as	in	the	previous	section.	The	new	top	module	in	VHDL
will	be	as	in	Listing	5.19.	As	can	be	seen	here,	the	IP	block	generated	in	Verilog
can	be	directly	used	in	the	VHDL	description.

5.6	Summary
Verilog	and	VHDL	are	the	HDLs	to	be	used	throughout	the	book.	We

explored	the	fundamental	properties	of	both	HDLs	through	examples	in	this
chapter.	Basically,	we	explored	the	module	representation	in	Verilog.	Then,	we
introduced	three	modeling	methods	related	to	it.	Afterward,	we	considered	the
effect	of	timing	and	delays	in	modeling.	We	also	considered	hierarchical	module
representation	in	Verilog.	We	finally	analyzed	how	a	testbench	can	be	formed	in

Verilog.	We	followed	the	same	methodology	in	exploring	VHDL	fundamentals
next.	We	also	considered	adding	an	IP	block	to	a	Verilog	and	VHDL	project.
Here,	we	benefit	from	the	generated	IP	block	for	the	first	system	in	Sec.	4.7.	In
all	these	sections,	we	benefit	from	examples	introduced	in	Chap.	4.	In	the
following	chapters,	we	will	expand	our	knowledge	on	Verilog	and	VHDL	with
digital	system	properties	to	be	introduced.	However,	using	fundamentals
introduced	in	this	chapter	is	a	must	to	implement	them.	Therefore,	topics	in	this
chapter	can	be	taken	as	basis	for	the	following	chapters.

5.7	Exercises
5.1			Check	whether	the	structural,	dataflow,	and	behavioral	Verilog
modeling	of	the	first	system	evaluated	in	Sec.	5.1	require	similar	(or	same)
FPGA	building	blocks	in	Vivado.
5.2			Repeat	Exercise	5.1	when	VHDL	is	used	in	describing	the	first	system
evaluated	in	Sec.	5.3.
5.3			Does	hierarchical	module	representations	in	Secs.	5.1	and	5.3	add	any
extra	FPGA	building	blocks	in	implementation?	Check	in	Vivado.
5.4			Does	adding	the	first	system	as	an	IP	block	add	any	extra	FPGA
building	blocks	in	implementation?	Check	in	Vivado.

CHAPTER	6

Data	Types	and	Operators

This	chapter	is	on	basic	data	types	and	operators	in	digital	systems.	We	will
explore	these	concepts	in	two	parts.	In	the	first	part	of	the	chapter,	we	will
handle	data	types	and	operators	from	a	generic	point	of	view	without	using	any
HDL	description.	Therefore,	we	will	first	consider	binary,	octal,	and
hexadecimal	number	representations.	Then,	we	will	explore	methods	to
represent	a	negative	number	in	a	digital	system.	We	will	next	introduce	methods
to	represent	a	binary	number	with	fractional	parts.	Here,	we	will	use	fixed-and
floating-point	representations.	We	will	also	consider	the	ASCII	code	to	represent
characters	in	a	digital	system.	Then,	we	will	evaluate	arithmetic	operations	on
binary	numbers.	In	the	second	part	of	the	chapter,	we	will	explore	data	types	and
operators	defined	in	Verilog	and	VHDL.	Therefore,	we	will	review	most	of	the
concepts	introduced	in	the	first	part	of	the	chapter	using	HDLs.	Moreover,	we
will	also	refer	to	data	types	used	in	previous	chapters.	Finally,	we	will	analyze
how	all	these	concepts	can	be	realized	in	an	FPGA.

6.1	Number	Representations
We	use	the	decimal	number	system	in	our	daily	life.	This	representation

provides	weights	(powers	of	10	here)	of	a	digit	with	respect	to	its	location.	Here,
the	least	significant	integer	digit	gets	weight	100,	the	next	one	gets	101,	and	so
on.	Using	this	form,	we	can	represent	an	entity	in	a	systematic	way.	Therefore,	a
decimal	number	255	in	fact	means	2	×	102	+	5	×	101	+	5	×	100.	A	decimal
number	with	fractional	part	can	also	be	represented	in	a	similar	way.	Now,
weight	of	the	digits	in	fractional	part	become	10−1,	10−2,	and	so	on	starting	from
the	dot	(separating	integer	and	fractional	parts)	from	left	to	right.	As	an	example,
the	decimal	number	1.25	corresponds	to	1	×	100	+	2	×	10−1	+	5	×	10−2.

6.1.1	Binary	Numbers

A	digit	in	binary	number	system	(called	bit)	can	take	two	values	as	0	or	1.
This	perfectly	matches	with	the	digital	system	having	two	voltage	levels	as
explained	in	Chap.	2.	Therefore,	binary	numbers	are	used	in	digital	systems
instead	of	decimal	representation.
Binary	number	representation	has	weights	in	powers	of	two	as	20,	21,	22,	·	·	·,

2N.	For	the	fractional	part,	weights	become	2−1,	2−2,	2−3,	and	so	on	starting	from
the	dot	separating	integer	and	fractional	parts.	In	a	binary	number,	bits	with	the
highest	and	lowest	weight	are	specifically	called	the	most	significant	bit	(MSB)
and	least	significant	bit	(LSB),	respectively.	Binary	digits	are	grouped	slightly
different	than	decimal	numbers.	Eight	bits	correspond	to	one	byte;	1024	bytes	to
one	kilobyte	(kB);	1024	kilobytes	to	one	megabyte	(MB);	and	1024	megabytes
to	one	gigabyte	(GB).

6.1.1.1	Decimal	to	Binary	Conversion
Integer	part	of	a	decimal	number	can	be	converted	to	binary	form	by

iteratively	dividing	it	by	two.	Iteration	ends	either	when	the	dividend	becomes
less	than	two	or	number	of	iterations	reach	a	predefined	limit.	Let’s	give	a
simple	example	on	this	operation.	If	we	want	to	convert	the	decimal	number	14
to	binary,	we	divide	it	by	two	iteratively	till	we	reach	the	remainder	0	or	1.	This
operation	is	tabulated	in	Table	6.1.	As	can	be	seen	in	this	table,	the	division
operation	reaches	remainder	1	after	three	iterations.	We	can	construct	the	binary
number	by	forming	an	array	starting	from	this	remainder	and	going	backwards
from	the	last	division	to	the	first	in	the	list.	Therefore,	binary	representation	of
the	decimal	number	14	will	be	1110.

TABLE	6.1	Decimal	to	Binary
Conversion	Example,	Integer	Part

Fractional	part	of	a	decimal	number	can	be	converted	to	binary	form	by
iteratively	multiplying	it	by	two.	After	each	multiplication,	integer	part	of	the
product	is	separated	and	multiplication	continues	from	the	fractional	part.
Iteration	ends	either	when	the	fractional	part	becomes	zero	or	number	of

iterations	reach	a	predefined	limit.	Let’s	give	a	simple	example	on	this	operation.
If	we	want	to	convert	the	decimal	number	0.125	to	binary,	we	multiply	it
iteratively	till	we	reach	the	product	1.00.	This	operation	is	tabulated	in	Table	6.2.
As	can	be	seen	in	this	table,	the	multiplication	operation	reaches	the	product
1.00	after	three	iterations.	Since	the	fractional	part	becomes	zero,	iteration	ends.

TABLE	6.2	Decimal	to	Binary
Conversion	Example,	Fractional	Part

We	can	construct	the	binary	number	by	forming	an	array	starting	from	the
integer	part	of	the	first	product	to	the	last	in	the	list.	Therefore,	binary
representation	of	the	decimal	number	0.125	will	be	0.001.

6.1.1.2	Binary	to	Decimal	Conversion
We	can	convert	a	decimal	number	with	integer	and	fractional	parts	by

applying	the	above	procedures	separately	to	the	number.	As	an	example,	binary
representation	of	the	decimal	number	14.125	will	be	1110.001.

6.1.1.2	Binary	to	Decimal	Conversion
We	can	convert	a	binary	number	to	decimal	by	weighting	each	digit	by	its

value	and	summing	the	result.	Let’s	explain	this	operation	on	an	example.	To
convert	the	binary	number	1110.001	to	decimal	form,	we	apply	the	following
operation:	1	×	23	+1	×	22	+1	×	21	+0	×	20	+0	×	2−1	+0	×	2−2	+1	×	2−3.	Summing
these,	we	will	obtain	14.125	in	decimal	form.

6.1.2	Octal	Numbers
Although	binary	numbers	are	suitable	for	digital	systems,	their	representation

may	not	be	compact.	Octal	numbers	can	be	used	instead	to	have	a	more	compact
representation.	Here,	there	are	eight	digits	as	(0,	1,	2,	3,	4,	5,	6,	7).	Next,
we	consider	how	conversions	can	be	made	between	binary	and	octal	numbers.

6.1.2.1	Binary	to	Octal	Conversion
We	can	convert	a	binary	number	to	octal	by	grouping	bits	in	blocks	of	three.

Then,	each	group	can	be	represented	by	the	corresponding	octal	digit.	As	a
result,	we	will	obtain	the	octal	representation.	If	the	number	groups	do	not	form
blocks	of	three,	then	we	append	zeros	to	the	integer	part	as	a	prefix	and
fractional	part	as	a	suffix.
Let’s	convert	the	binary	number	1110.001	to	octal.	Since	the	total	number	of

bits	in	the	integer	part	of	number	is	not	a	multiple	of	three,	we	should	represent
it	by	appending	zeros	as	001110.001.	Then,	we	can	group	these	digits	as	001=1,
110=6,	and	001=1.	As	a	result,	octal	representation	of	the	binary	number
1110.001	will	be	16.1.	As	can	be	seen	in	this	example,	the	octal	number	is	more
compact	compared	to	its	binary	counterpart.

6.1.2.2	Octal	to	Binary	Conversion
We	can	convert	an	octal	number	to	binary	by	applying	the	reverse	operation.

Hence,	we	represent	each	octal	digit	by	three	bits	and	form	the	final	binary
number.	Let’s	take	the	octal	number	16.1.	We	can	represent	each	octal	digit	by
three	binary	digits	as	1=001,	6=110,	and	1=001.	As	a	result,	binary	representation
of	the	octal	number	16.1	will	be	001110.001.	Since	the	two	leftmost	zero	bits	do
not	change	the	value	of	number,	it	can	be	represented	as	1110.001.

6.1.3	Hexadecimal	Numbers
While	representing	binary	numbers	in	compact	form,	hexadecimal	numbers

will	be	more	useful	compared	to	octal	numbers.	A	hexadecimal	number	has	16
digits	as	(0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F).	Next,	we
consider	how	conversions	can	be	made	between	binary	and	hexadecimal
numbers.

6.1.3.1	Binary	to	Hexadecimal	Conversion
We	can	convert	a	binary	number	to	hexadecimal	by	grouping	bits	in	blocks	of

four.	Then,	each	group	can	be	represented	by	the	corresponding	hexadecimal
digit.	If	bit	groups	do	not	form	blocks	of	four,	then	we	append	zeros	to	the
integer	part	of	the	binary	number	as	a	prefix	and	fractional	part	as	a	suffix.	As	a
result,	we	will	obtain	the	hexadecimal	representation.
Let’s	convert	the	binary	number	1110.001	to	hexadecimal	form.	Since	the

total	number	of	bits	in	the	fractional	part	of	the	number	is	not	a	multiple	of	four,
we	should	represent	it	by	appending	zero	as	a	suffix	as	1110.0010.	Then,	we	can

group	these	digits	as	1110=E	and	0010=2.	As	a	result,	hexadecimal	representation
of	the	binary	number	1110.001	will	be	E.2.	As	can	be	seen	in	this	example,	the
hexadecimal	number	is	more	compact	compared	to	its	binary	(and	octal)	form.

6.1.3.2	Hexadecimal	to	Binary	Conversion
We	can	convert	a	hexadecimal	number	to	binary	by	applying	the	reverse

operation.	Hence,	we	represent	each	hexadecimal	digit	by	four	bits	and	form	the
final	binary	number.	Let’s	take	the	hexadecimal	number	E.2.	We	can	represent
each	hexadecimal	digit	by	four	binary	digits	as	E=1110	and	2=0010.	As	a	result,
binary	representation	of	the	hexadecimal	number	E.2	will	be	1110.0010.	Since
the	rightmost	zero	bit	does	not	affect	the	value	of	the	number,	it	can	also	be
represented	as	1110.001.

6.2	Negative	Numbers
There	may	be	negative	binary	numbers	in	operation.	Although	in	daily	life	we

put	a	negative	sign	in	front	of	the	number,	this	is	not	the	case	in	a	digital	system.
Instead,	there	are	three	methods	to	represent	both	positive	and	negative	binary
numbers.	These	are	the	signed	bit,	one’s	complement,	and	two’s	complement
representation.

6.2.1	Signed	Bit	Representation
The	first	representation	mimics	the	daily	life	practice	(negative	sign	in	front	of

number)	by	a	sign	bit	in	the	MSB	of	number.	In	this	representation,	a	positive
number	will	have	the	sign	bit	as	zero.	A	negative	number	will	have	the	sign	bit
as	one.	Hence,	the	name	signed	bit	representation.	Although	this	method	seems
straightforward,	it	is	not	very	effective	since	addition	and	subtraction	may	need
extra	operations	as	will	be	seen	in	Sec.	6.5.
Let’s	give	two	examples	on	signed	bit	representation.	Assume	that	we	have

decimal	number	14.	We	know	that	binary	representation	of	this	number	is	1110.
As	can	be	seen	here,	the	MSB	represents	the	number	value.	Therefore,	it	is	not
possible	to	assign	it	as	the	sign	bit.	To	overcome	this	problem,	let’s	append	four
more	zeroes	to	the	number.	Then,	it	becomes	0000	1110.	In	this	representation,
we	can	use	the	MSB	as	sign	bit.	Remaining	bits	will	serve	as	value	bits.	Since
the	number	14	is	positive,	its	sign	bit	representation	will	be	0000	1110.	Now,
let’s	represent	the	decimal	number	−14	using	signed	bit.	Corresponding	binary
number	will	become	1000	1110.	Therefore,	only	the	MSB	has	changed	to	show
that	the	number	is	negative.

6.2.2	One’s	Complement	Representation
The	second	representation	is	based	on	the	bit	complement	(NOT)	operation.

Here,	the	negative	number	is	represented	by	the	bit	complement	of	the
corresponding	positive	number.	Therefore,	this	representation	is	called	one’s
complement.	In	this	representation,	no	extra	bit	is	assigned	to	sign.	However,
arithmetic	operations	are	not	straightforward	in	this	representation.
Let’s	give	two	examples	on	one’s	complement	representation.	As	in	the

previous	section,	let’s	first	take	the	decimal	number	14.	Based	on	the	previous
format,	it	will	be	represented	as	0000	1110.	Now,	let’s	represent	the	decimal
number	−14	in	one’s	complement	form.	To	do	so,	we	take	the	complement	of
each	bit	and	obtain	1111	0001.

6.2.3	Two’s	Complement	Representation
The	third	representation	is	based	on	two’s	complement.	Here,	the	negative

number	is	first	represented	in	one’s	complement	form.	Then,	the	result	is
incremented	by	one.	Two’s	complement	has	a	major	advantage	compared	to	the
previous	representations.	Subtracting	two	binary	numbers	can	be	formulated	as
adding	the	first	number	with	two’s	complement	of	the	second.	The	result	also
keeps	the	sign	information.	Therefore,	need	for	an	extra	sign	bit	is	eliminated.
We	will	see	this	operation	in	Sec.	6.5.
Let’s	continue	with	the	example	given	in	one’s	complement	form.	There,	the

decimal	number	−14	was	represented	as	1111	0001	in	one’s	complement	form.
To	obtain	the	two’s	complement	form	of	−14,	we	should	add	one	to	the	LSB	of
one’s	complement	representation.	Hence,	we	obtain	1111	0010	as	the	two’s
complement	representation	of	decimal	number	−14.

6.3	Fixed-and	Floating-Point	Representations
Binary	number	to	be	processed	in	a	digital	system	may	have	a	fractional	part.

We	distinguished	the	integer	and	fractional	parts	of	such	numbers	by	a	dot	in	the
previous	section.	This	is	not	possible	in	a	digital	system.	Instead,	there	are	two
methods	to	represent	a	binary	number	with	integer	and	fractional	parts.	These
are	fixed-and	floating-point	representations.

6.3.1	Fixed-Point	Representation
The	number	of	bits	assigned	to	the	integer	and	fractional	parts	is	fixed	in	this

representation.	Hence	the	name	fixed-point	representation.	This	method	is	easy
to	implement	since	the	number	of	bits	assigned	to	the	integer	and	fractional	parts
is	fixed.

is	fixed.
We	can	show	an	unsigned	fixed-point	number	(without	a	sign	bit)	as	UQp.q.

Here,	U	indicates	the	unsigned	bit	notation;	pq	represents	the	number,	p	being
the	integer	and	q	being	the	fractional	part.	We	provide	some	fixed-point
representation	formats	in	Table	6.3.	Note	that	we	are	not	limited	by	these
formats	in	an	FPGA	implementation	since	the	user	is	free	to	assign	any	number
of	bits	to	the	integer	and	fractional	parts.	We	will	see	such	examples	in	Secs.	6.7
and	6.9.

TABLE	6.3	Fixed-Point	Unsigned
Number	Representation	Formats

Let’s	reconsider	the	decimal	number	14.125.	We	know	that	binary
representation	of	this	number	is	1110.001.	Assume	that	we	would	like	to
represent	this	number	in	UQ16.	form.	Therefore,	there	will	be	no	fractional	part.
The	number	of	bits	to	be	assigned	to	the	integer	part	will	be	16.	Hence,	the
resulting	number	in	hexadecimal	form	will	be	000E.	Zeros	appended	to	the	left
of	the	number	will	not	affect	its	value.	They	will	only	satisfy	the	fixed-point
representation	format.	If	the	UQ16.16	fixed-point	representation	is	used	for	the
same	number,	then	the	integer	part	of	14.125	will	be	the	same	in	hexadecimal
form	as	000E.	The	fractional	part	will	be	in	hexadecimal	form	as	0200.	Here,
zeros	are	appended	to	the	right	of	the	number.	Therefore,	the	value	of	the
fractional	part	will	not	be	affected.	As	a	result,	fixed-point	representation	of	the
number	will	be	000E0200.	As	can	be	seen	here,	there	is	no	separator	between	the
integer	and	fractional	parts	of	the	number.	Knowing	that	the	number	is	in
UQ16.16	form,	we	can	easily	extract	the	integer	and	fractional	parts	(since	we
know	the	number	of	bits	assigned	to	each).
In	a	similar	way,	we	can	represent	signed	numbers.	In	this	form,	the	MSB	is

reserved	for	the	sign	bit.	Therefore,	we	use	the	sign	bit	representation	here.	We
provide	three	signed	bit	formats	for	the	fixed-point	representation	in	Table	6.4.
Similar	to	the	unsigned	bit	representation,	fixed-point	number	will	be	in	the	form
Qp.q.

TABLE	6.4	Fixed-Point	Signed
Number	Representation	Formats

Let’s	consider	the	decimal	number	−14.125.	Assume	that	we	would	like	to
represent	this	number	in	Q15.	form.	The	resulting	number	in	hexadecimal	form
will	be	800E.	Here,	the	MSB	is	set	to	1	as	the	sign	bit	to	represent	that	the
number	is	negative.	If	the	Q15.16	fixed-point	representation	is	used	for	the	same
number,	then	hexadecimal	form	of	the	number	will	be	800E0200.	Again,	the
MSB	is	kept	as	the	sign	bit	in	this	representation.

6.3.2	Floating-Point	Representation
Fixed-point	representation	is	easy	to	implement	and	process.	However,	it	has

a	major	drawback.	The	number	of	bits	assigned	to	integer	and	fractional	parts	is
always	fixed	in	this	representation.	This	causes	limitations	both	in	the	range	of
numbers	to	be	represented	and	their	resolution.	Floating-point	representation	can
be	used	to	overcome	these	problems.	As	the	name	implies,	the	number	of	bits
assigned	to	integer	and	fractional	parts	is	not	fixed	in	this	representation.	Instead,
the	assigned	number	of	bits	differ	for	each	number	depending	on	its	significant
digits.	Therefore,	a	much	wider	range	of	values	can	be	represented	in	this	form.
In	floating-point	representation,	a	binary	number	with	fractional	part	will	be

shown	as	N	=	(−1)S	×	2E	×	F.	Here,	S	stands	for	the	sign	bit,	E	represents	the
exponent	value,	and	F	stands	for	the	fractional	part.	Then,	floating-point	number
N	is	kept	in	memory	as	X	=	SEF.
To	represent	a	floating-point	number	as	N	=	(−1)S	×	2E	×	F,	the	number

should	be	normalized	such	that	the	integer	part	will	have	one	digit.	For	ease	of
binary	representation,	the	exponent	will	be	biased	by	2(e−1)	−1,	where	e	is	the
number	of	bits	to	be	used	for	E	in	the	given	format.	Finally,	certain	number	of
bits	will	be	assigned	to	S,	E,	and	F	depending	on	the	standard	format	used	for
representation.	The	IEEE	754	standard	is	used	by	most	digital	systems	in
floating-point	representation.	This	standard	is	summarized	in	Table	6.5.

TABLE	6.5	The	IEEE	754	Standard	for
Floating-Point	Representation

Let’s	take	the	decimal	number	14.125	and	represent	it	in	floating-point	form.
We	will	follow	the	below	itemized	procedure	for	this	purpose:

•	Decide	on	the	format:	Let’s	pick	the	“half”	format	for	this	example.
•	Represent	the	integer	and	fractional	parts	of	the	decimal	number	in	binary
form:	The	number	becomes	1110.001.
•	Decide	on	the	sign	bit	S:	Since	the	number	is	positive,	(−1)0	=	1,	S=0.
•	Normalize	the	number	such	that	the	integer	part	will	have	one	digit:	The
number	becomes	1.110001×23.
•	Find	the	exponent	value:	For	the	half	format,	the	exponent	bias	is	15.
Therefore,	the	exponent	will	become	E	=	15	+	3	=	18	with	bias.	Or,	in
binary	form	E=10010.
•	Find	the	fractional	part:	The	fractional	part	(after	normalization)	was
110001.	Since	10	bits	should	be	used	to	represent	the	fractional	part	of	the
number	in	half	format,	F=1100010000.	Remember,	since	this	is	the
fractional	part,	we	append	extra	zeros	to	its	right	so	that	the	value	of	the
number	is	not	affected.
•	Construct	X	=	SEF:	Finally,	X	=	0	10010	1100010000.	Or	in	hexadecimal
form,	X=4B10.

Next,	let’s	represent	the	decimal	number	−14.125	in	floating-point	form.	As	in
the	previous	example,	let’s	use	the	half	format.	Then,	the	only	change	will	be	in
the	sign	bit.	As	a	result,	the	number	will	become	X	=	1	10010	1100010000.	Or
in	hexadecimal	form,	X=CB10.

6.4	ASCII	Code
We	do	not	only	process	numbers	in	digital	systems.	For	some	applications,	we

may	need	to	handle	characters	and	symbols	as	well.	We	know	that	everything	in
a	digital	system	is	represented	in	binary	form.	Therefore,	characters	and	symbols
should	also	be	represented	as	such.	One	way	of	representing	characters	and
symbols	in	binary	form	is	using	the	ASCII	code.	ASCII	stands	for	the	American
Standard	Code	for	Information	Interchange.	The	ASCII	code	for	characters	and
symbols	are	given	in	Table	6.6.	In	this	table,	LSB	stands	for	least	significant
byte	and	MSB	stands	for	most	significant	byte.	To	represent	a	specific	character
(or	symbol),	its	corresponding	code	should	be	given.	Let’s	assume	that	we	would
like	to	represent	the	@	symbol.	Using	Table	6.6,	the	corresponding	ASCII	code	in
hexadecimal	form	will	be	40.

TABLE	6.6	ASCII	Code	Table

6.5	Arithmetic	Operations	on	Binary	Numbers
We	will	consider	arithmetic	operations	on	binary	numbers	from	a	generic

point	of	view	in	this	section.	Therefore,	we	will	first	analyze	each	arithmetic
operation	based	on	binary	numbers	having	only	integer	part.	Then,	we	will
consider	arithmetic	operations	on	numbers	with	fractional	part	(represented	by
fixed-and	floating-point	forms).

6.5.1	Addition
Adding	two	binary	numbers	is	not	different	than	adding	two	decimal	numbers.

The	only	condition	the	reader	should	remember	is	that	a	binary	number	can	take
only	two	values	as	zero	or	one.	Therefore,	adding	two	binary	digits	will	produce
a	carry	bit	whenever	two	digits	with	value	one	are	added.

a	carry	bit	whenever	two	digits	with	value	one	are	added.
Let’s	give	an	example	on	adding	two	binary	numbers	represented	by	eight	bits

as	0000	1110	and	0010	0111.	We	can	also	call	these	numbers	as	fixed-point
with	format	UQ8.0.	The	sum	will	be	0011	0101.
There	may	be	cases	where	adding	two	N	bit	numbers	result	in	a	N	+	1	bit

number.	For	such	cases,	the	MSB	(N+1th	bit)	is	called	overflow.	This	bit	should
be	handled	separately	if	the	number	of	bits	assigned	to	the	sum	is	N.
Adding	two	binary	numbers	with	fractional	part	is	also	the	same	as	in	its

decimal	counterpart.	Here,	the	important	point	is	that	the	two	numbers	should	be
represented	in	the	same	format.	If	this	is	not	the	case,	the	first	step	is	making
formats	the	same.	Next,	let’s	consider	the	binary	addition	operation	on	fixed-and
floating-point	numbers.

6.5.1.1	Fixed-Point	Addition
Let’s	start	with	adding	two	binary	numbers	represented	by	the	same	unsigned

fixed-point	format.	Since	both	numbers	will	have	the	same	number	of	integer
and	fractional	bits,	addition	will	be	straightforward	for	this	case.	As	an	example,
let’s	take	two	binary	numbers	represented	in	UQ8.4	format	as	0000	1110	0010
and	0010	0111	0110.	The	sum	will	be	0011	0101	1000.	The	first	and	second
numbers	are	14.125	and	39.375	in	decimal	form	with	the	sum	53.5.	The	sum
obtained	in	UQ8.4	format	is	also	the	same	as	this	number	is	in	binary	form.
Adding	two	fixed-point	signed	numbers	with	common	format	is	the	same	as

adding	two	numbers	with	unsigned	fixed-point	format.	The	only	difference	is
that	the	sign	bit	in	each	number	should	not	be	taken	into	account	in	the	addition
operation.	At	this	step,	we	assume	that	the	two	fixed-point	signed	numbers	have
the	same	sign.	We	will	see	adding	two	numbers	with	different	sign	bits	in	the
next	section	under	subtraction.

6.5.1.2	Floating-Point	Addition
Adding	two	binary	numbers	represented	by	floating-point	format	is	more

complicated.	As	a	reminder,	a	binary	number	is	represented	as	N	=	(−1)S	×	2E	×
F	in	floating-point	form.	Moreover,	the	number	is	saved	as	X	=	SEF.	To	make
the	addition	operation,	the	first	constraint	is	that	the	two	numbers	should	have
the	same	floating-point	format	such	as	half,	single,	double,	or	quad.	Moreover,
the	exponent	value	(E)	should	be	the	same	for	both	numbers.	If	they	are	not	the
same,	then	fractional	parts	should	be	adjusted	accordingly.	Then,	addition	can	be
done.	After	addition,	the	fractional	part	and	exponent	should	be	adjusted	such
that	a	valid	floating-point	representation	is	obtained.	Here,	we	assume	that	the

sign	bit	of	two	numbers	to	be	added	are	the	same.	We	will	handle	adding	two
numbers	with	different	sign	bits	in	the	next	section	under	subtraction.
Let’s	give	an	example	on	adding	two	decimal	numbers	14.125	and	39.375.

Assume	that	the	half	floating-point	form	is	selected	such	that	first	and	second
numbers	are	represented	as	X1	=	0100	1011	0001	0000	and	X2	=	0101	0000
1110	1100.	These	numbers	can	be	represented	as	1.110001×23	and
1.00111011×25	after	discarding	the	exponent	bias.	We	can	equate	the
exponential	value	for	these	such	that	the	second	number	becomes
100.111011×23.	Then,	we	can	add	these	two	numbers	as	(1.110001	+
100.111011)×23.	Here,	the	addition	operation	on	two	numbers	can	be	done	as	if
they	are	in	a	fixed-point	form.	The	result	becomes	110.101100×23.	This	number
can	be	represented	as	1.10101100×25.	Hence,	half	floating-point	representation
of	the	result	becomes	X3	=0101	0010	1011	0000.	As	can	be	seen	in	this
example,	adding	two	floating-point	numbers	require	format	changes	and
condition	checks.	Therefore,	it	is	not	straightforward	to	add	two	numbers
represented	in	floating-point	form.

6.5.2	Subtraction
Two	binary	numbers	can	be	subtracted	in	two	different	ways.	The	first	method

is	plain	subtraction	as	in	decimal	numbers.	There	is	nothing	specific	about	this
operation.	The	second	method	is	using	two’s	complement	representation.	Here,
the	negative	number	is	represented	in	two’s	complement	form.	This	provides	a
clear	advantage	such	that	subtraction	is	performed	by	addition.	Hence,	no	second
circuitry	is	needed	for	the	subtraction	operation.	Moreover,	if	the	result	of
subtraction	is	negative	it	is	automatically	represented	in	two’s	complement	form
as	well.	Therefore,	this	method	is	used	in	most	digital	systems.
Let’s	give	two	examples	on	subtracting	two	binary	numbers	using	two’s

complement	representation.	In	the	first	example,	let’s	subtract	0000	1110	from
0010	0111.	First,	we	obtain	the	two’s	complement	of	0000	1110	as	1111	0010.
Adding	11110010	to	0010	0111	gives	1	0001	1001.	As	can	be	seen,	the	result	is
represented	by	nine	bits.	In	other	words,	an	overflow	occurred.	If	overflow
occurs,	we	should	discard	it	and	the	result	is	final.	In	other	words,	subtraction
results	in	0001	1001.	In	the	second	example,	let’s	subtract	0010	0111	from	0000
1110.	Here,	we	obtain	the	two’s	complement	of	0010	0111	and	add	it	to	0000
1110.	The	result	becomes	1110	0111.	In	this	operation,	no	overflow	occurs.	This
indicates	that	the	result	is	negative	and	represented	in	two’s	complement	form.
We	can	check	it	by	obtaining	the	two’s	complement	of	the	first	subtraction	result

which	gives	1110	0111.	As	can	be	seen	here,	two’s	complement	representation
handles	sign	of	the	result	after	operation.
Subtraction	operation	can	also	be	applied	to	two	binary	numbers	with

fractional	part.	As	in	addition,	the	important	point	here	is	that	the	two	numbers
should	be	represented	in	the	same	format.	If	this	is	not	the	case,	the	first	step	is
making	formats	the	same.	Next,	let’s	consider	binary	subtraction	operation	on
fixed-and	floating-point	numbers.

6.5.2.1	Fixed-Point	Subtraction
Let’s	start	with	subtracting	two	binary	numbers	represented	by	the	same

unsigned	fixed-point	format.	To	explain	subtraction,	let’s	take	two	binary
numbers	represented	in	UQ8.4	format	as	0000	1110	0010	and	0010	0111	0110.
In	the	first	example,	let’s	subtract	0000	1110	0010	from	0010	0111	0110.	We
can	apply	two’s	complement	method	as	in	the	previous	example.	Therefore,	we
first	obtain	the	two’s	complement	of	0000	1110	0010	as	1111	0001	1110.
Adding	1111	0001	1110	to	0010	0111	0110	gives	1	0001	1001	0100.	As	can
be	seen	here,	the	result	should	be	represented	by	13	bits	but	the	original	format
had	12	bits.	Since	overflow	occurred,	we	discard	the	MSB	and	obtain	the	final
result	as	0001	1001	0100.	Here,	the	first	and	second	numbers	were	14.125	and
39.375,	respectively	in	decimal	form.	Subtracting	14.125	from	39.375	results	in
25.25.	Binary	subtraction	result	obtained	in	UQ8.4	form	is	also	the	same	as	this
number.	In	the	second	example,	let’s	subtract	0010	0111	0110	from	0000	1110
0010.	Applying	the	same	steps	as	in	the	previous	example,	we	will	obtain	the
subtraction	result	as	1110	0110	1100.	In	this	operation,	no	overflow	occurs.
This	indicates	that	the	result	is	negative	and	represented	in	two’s	complement
form.
Subtracting	two	fixed-point	signed	numbers	with	the	same	format	is	the	same

as	in	subtracting	two	numbers	with	unsigned	fixed-point	format.	The	only
difference	is	that	the	sign	bit	should	be	taken	into	account	such	that	if	the
number	is	negative,	it	should	be	represented	as	such	in	the	subtraction	operation.

6.5.2.2	Floating-Point	Subtraction
As	in	addition,	subtracting	two	binary	numbers	represented	by	floating-point

format	is	more	complicated.	To	subtract	numbers,	the	first	constraint	is	their
having	the	same	floating-point	format	as	half,	single,	double,	or	quad.	Moreover,
exponent	(E)	should	be	the	same	for	both	numbers.	If	they	are	not	the	same,	then
fractional	parts	should	be	adjusted	accordingly.	Then,	subtraction	can	be	done.
Afterward,	the	fractional	part,	exponent,	and	sign	bit	should	be	adjusted	such

that	a	valid	floating-point	representation	is	obtained.	While	subtracting	numbers,
the	sign	bit	should	be	taken	into	account	such	that	if	the	number	is	negative,	it
should	be	represented	as	such	in	operations.
Let’s	take	two	examples	on	subtracting	two	floating-point	numbers.	For	these

let’s	pick	two	decimal	numbers	as	14.125	and	39.375	(which	we	have	been	using
up	to	now).	Assume	that	the	half	floating-point	form	is	selected.	Hence,	the	first
and	second	numbers	are	represented	as	X1	=	0100	1011	0001	0000	and	X2	=
0101	0000	1110	1100.	These	numbers	can	be	represented	as	1.110001×23	and
1.00111011×25	after	discarding	the	exponent	bias.	We	can	equate	the
exponential	value	for	these	such	that	the	second	number	becomes
100.111011×23.	As	first	example,	let’s	subtract	1.110001×23	from
100.111011×23.	We	can	represent	the	subtraction	as
(100.111011−1.110001)×23.	Here,	subtraction	can	be	done	as	if	they	are	in
fixed-point	form.	The	result	becomes	11.001010×23.	This	number	can	be
represented	as	1.1001010×24.	Hence,	the	half	floating-point	form	of	the	result
becomes	X3	=0100	1110	0101	0000.	As	second	example,	let’s	subtract
100.111011×23	from	1.110001×23	which	can	be	shown	as
(1.110001−100.111011)×23.	The	result	of	this	operation	becomes
−1.1001010×24.	Hence,	the	half	floating-point	form	of	the	result	becomes	X3
=1100	1110	0101	0000.

6.5.3	Multiplication
Multiplying	two	binary	numbers	is	also	the	same	as	multiplying	two	decimal

numbers.	The	reader	should	be	aware	that	the	product	term	requires	more	bits	for
representation	compared	to	multiplied	numbers.	Let’s	give	an	example	on
multiplying	two	binary	numbers	represented	by	eight	bits	as	0000	1110	and	0010
0111.	Their	product	will	be	10	0010	0010.	As	can	be	seen	here,	the	product	term
requires	10	bits	for	representation.	The	multiplication	operation	can	also	be
applied	on	two	binary	numbers	with	fractional	part.	Next,	let’s	consider	the
binary	multiplication	operation	on	fixed-and	floating-point	numbers.

6.5.3.1	Fixed-Point	Multiplication
Let’s	start	with	multiplying	two	binary	numbers	represented	by	the	same

unsigned	fixed-point	format.	To	explain	the	multiplication	operation,	let’s	take
two	binary	numbers	represented	in	UQ8.4	format	as	0000	1110	0010	and	0010
0111	0110.	Here,	the	reader	can	represent	these	two	numbers	as	11100010×2−4

and	1001110110×2−4.	Product	of	these	two	numbers	will	be	11100010×
1001110110×2−8.	Hence,	the	result	becomes	100010110000101100×2−8.	We	can
represent	this	number	in	UQ8.4	format	as	0010	1100	0010.	As	can	be	seen	in
this	example,	an	overflow	with	two	and	four	bits	occurred	in	integer	and
fractional	parts,	respectively.	Therefore,	a	larger	format	should	be	used	in
representing	the	result.	Multiplying	two	fixed-point	signed	numbers	is	the	same
as	in	unsigned	numbers.	However,	the	sign	bit	should	be	taken	into	account	in
deciding	the	sign	of	the	product.

6.5.3.2	Floating-Point	Multiplication
Multiplying	two	binary	numbers	represented	by	floating-point	format	is	more

complicated	as	in	addition	and	subtraction.	Let’s	give	an	example	on	multiplying
two	decimal	numbers	14.125	and	39.375.	Assume	that	these	numbers	are
represented	by	the	half	floating-point	form.	From	previous	examples	we	know
that	these	numbers	can	be	represented	as	1.110001×23	and	1.00111011×25	or	in
simplified	form	as	1110001×2−3	and	100111011×2−3,	respectively.	Hence,	their
product	will	be	1110001×	100111011×2−6.	The	result	becomes
1000101100001011×2−6.	This	number	can	be	represented	as	1.000101100001011
×29.	Hence,	half	floating-point	form	of	the	result	will	be	X3	=0110	0000	0101
1000.	In	this	representation,	least	significant	five	bits	are	discarded	due	to	the
half	floating-point	format.	However,	the	effect	of	these	bits	are	minor	compared
to	the	overflow	in	fixed-point	representation.	In	this	example,	the	two	floating-
point	numbers	had	the	same	sign	bit	as	positive.	For	floating-point	numbers
having	negative	sign	bit,	this	should	be	taken	into	account	in	operations.

6.5.4	Division
Dividing	two	binary	numbers	is	also	the	same	as	dividing	two	decimal

numbers.	The	reader	should	be	aware	that	the	division	of	two	integer	numbers
may	result	in	a	number	with	extra	fractional	part.	Let’s	give	an	example	on
dividing	two	binary	numbers	represented	by	eight	bits	as	0010	0111	and	0000
1110.	Let’s	divide	the	first	number	by	the	second.	Integer	part	of	the	division
will	be	10.	Besides,	there	is	also	a	fractional	part	of	the	division.	For	ease	of
demonstration,	we	can	represent	this	fractional	part	by	four	bits	as	1100.	The
division	operation	can	also	be	applied	on	two	binary	numbers	with	fractional
part.	Next,	let’s	consider	the	binary	division	operation	on	fixed-and	floating-
point	numbers.

6.5.4.1	Fixed-Point	Division
To	explain	the	division	operation,	let’s	take	two	binary	numbers	in	UQ8.4

format	as	0000	1110	0010	and	0010	0111	0110.	Here,	the	reader	can	represent
these	two	numbers	as	11100010×2−4	and	1001110110×2−4.	Let’s	divide	the
second	number	by	the	first	which	can	be	represented	as	1001110110÷
11100010×20.	The	division	results	in	a	fractional	number	with	overflow.
Therefore,	it	should	be	truncated.	Then,	the	result	becomes	101100×2−4.	We	can
represent	this	number	in	UQ8.4	format	as	0000	0010	1100.

6.5.4.2	Floating-Point	Division
Let’s	finally	give	an	example	on	dividing	the	decimal	number	39.375	by

14.125	represented	by	half	floating-point	form.	We	know	that	these	numbers	can
be	represented	as	1.00111011×25	and	1.110001×23,	respectively,	from	previous
sections.	We	can	represent	these	numbers	as	100111011×2−3	and	11100011	×2−3.
Therefore,	their	division	can	be	represented	as	100111011	÷	1110001	×20.	The
result	of	division	will	be	1.0110010011	×21.	Hence,	half	floating-point	form	of
the	result	becomes	X3=01000001	1001	0011.	In	this	representation,	least
significant	bits	lower	than	digit	10	are	discarded	due	to	half	floating-point
format.	However,	effect	of	these	bits	are	minor	compared	to	the	overflow	in
fixed-point	representation.	In	this	example,	two	floating-point	numbers	had	the
same	sign	bit	as	positive.	For	floating-point	numbers	having	negative	sign	bit,
this	should	be	taken	into	account	in	operations.

6.6	Data	Types	in	Verilog
We	introduced	number	representations	and	related	concepts	from	a	generic

point	of	view	in	previous	sections.	Starting	from	this	section,	we	will	handle
these	concepts	using	HDLs.	Therefore,	we	will	start	exploring	data	types	in
Verilog	in	this	section.	Then,	we	will	consider	constants	and	parameters.
Afterward,	we	will	introduce	vectors.	We	will	analyze	the	FPGA
implementation	details	of	these	in	Sec.	6.11.

6.6.1	Net	and	Variable	Data	Types
A	value	in	a	digital	system	can	basically	be	represented	either	as	net	or

variable	in	Verilog.	The	net	data	type	is	specific	for	connecting	two	elements.
For	us,	the	most	important	net	data	type	is	wire.	As	the	name	implies,	this	data
type	acts	simply	as	a	wire	connecting	two	elements.	The	variable	data	type	can

be	used	to	represent	a	generated	data	till	it	changes.	Useful	variable	data	types
are	reg	and	integer	in	Verilog.	A	reg	variable	can	be	used	to	represent	one-bit
data.	An	integer	variable	typically	represents	32-bit	long	data.	We	can	define	a
net	or	variable	data	type	in	Verilog	by	the	structure	data_type	data_name.	For
example,	we	can	define	wire	in1	to	indicate	a	variable	in1	of	type	wire.

6.6.2	Data	Values
A	net	or	variable	data	type	can	get	one	of	four	predefined	values.	These	are	as

follows:

0	corresponds	to	logic	level	zero.
1	corresponds	to	logic	level	one.
x	represents	the	undefined	logic	level.
z	represents	high	impedance.

We	are	familiar	with	logic	level	zero	and	one	from	previous	chapters.	The
undefined	logic	level	x	is	used	in	logical	operations	when	the	corresponding
value	is	unknown	or	it	does	not	affect	the	operation.	For	the	second	case,	x	is
most	of	the	times	called	“don’t	care”	condition.	The	high	impedance	value	z
indicates	that	connection	at	that	point	is	disabled.	In	other	words,	it	indicates	an
open	circuit	at	the	given	location.

6.6.3	Naming	a	Net	or	Variable
While	describing	a	digital	system	in	Verilog,	one	may	want	to	name	a	net	or

variable.	Here,	the	reader	is	free	to	choose	among	many	options.	The	only
constraint	here	is	that	the	name	should	not	begin	with	a	digit	and	it	should	not	be
any	of	Verilog	keywords.	Besides,	Verilog	is	case	sensitive.	Hence,	an
uppercase	and	lowercase	character	is	not	the	same.	This	should	be	taken	into
account	while	assigning	a	name.	More	importantly,	meaningful	and
representative	names	should	be	picked	for	assignment	to	increase	the	readability
of	Verilog	description.

6.6.4	Defining	Constants	and	Parameters
We	can	represent	binary,	octal,	hexadecimal,	and	decimal	constant	values

(besides	others)	in	Verilog.	General	structure	of	representing	a	constant	for	these
types	is	bit_width	’radix	constant_value.	Here,	bit_width	indicates	the
number	of	bits	to	represent	the	constant	value.	If	this	is	not	set,	the	default	value
is	16	bits.	The	radix	can	be	binary	(b),	octal	(o),	hexadecimal	(h),	or	decimal

(d).	The	constant_value	is	the	actual	constant	to	be	represented.
Let’s	give	some	examples	on	constants.	1’b0	indicates	the	binary	number	0.

2’b10	indicates	the	binary	number	10.	4’b10	indicates	the	binary	number	0010.
6’o75	indicates	the	octal	number	75.	8’hCA	indicates	the	hexadecimal	number
CA.	Finally,	8’d251	indicates	the	decimal	number	251	which	can	be	represented
by	eight	bits.

6.6.5	Defining	Vectors
A	net	or	variable	need	not	be	composed	of	one	bit	in	Verilog.	Instead,	it	can

be	represented	as	a	vector.	This	allows	us	to	represent	data	in	compact	form.	The
vector	format	for	representation	will	be	the	same	as	a	net	or	variable	definition
with	an	extra	[N-1:0]	prefix	which	indicates	that	there	will	be	N	net	variable
entries	packed	as	a	vector.	Here,	MSB	and	LSB	are	located	at	the	N-1th	and
zeroth	entries,	respectively.
As	an	example,	we	can	define	wire[7:0]	in1	to	indicate	a	variable	in1	of

type	wire	with	eight	entries.	Here,	in1	represents	all	eightbit	values	at	once.
in1[7]	represents	the	most	significant	entry.	in1[0]	represents	the	least
significant	entry.	We	can	select	a	subpart	of	the	vector	as	in1[5:3]	such	that	the
fourth,	fifth,	and	sixth	entries	are	selected.
We	can	also	change	the	order	of	bits	in	representing	a	vector.	Continuing	from

the	above	representation,	we	can	redefine	wire[0:7]	in1	to	indicate	a	variable
in1	of	type	wire	with	eight	entries.	Now,	the	most	significant	bit	will	be
represented	by	in1[0].	The	least	significant	entry	will	be	represented	by	in1[7].
We	next	provide	Verilog	description	as	an	example	of	vector	operations	in

Listing	6.1.	Here,	first	a	specific	vector	entry	is	selected.	Then,	subpart	of	the
vector	is	selected.	Finally,	the	vector	bit	order	is	reversed.	We	provide	the	RTL
schematic	of	these	vector	operations	in	Fig.	6.1.	As	can	be	seen	in	this	figure,
vector	operations	are	performed	by	wiring	input	and	output	ports	only.

FIGURE	6.1	RTL	schematic	of	basic	vector	operations.

To	explain	working	principles	of	vector	operations,	we	provide	a	testbench
file	in	Listing	6.2.	Here,	the	input	vector	to	be	processed	is	taken	as	FA.	We
provide	the	results	obtained	from	the	testbench	file	in	Fig.	6.2.	These	results
indicate	that	vector	entries	can	be	processed	as	desired	in	Verilog.

FIGURE	6.2	Basic	Vector	Operation	Results	in	Verilog.

6.7	Operators	in	Verilog
There	are	basically	six	operator	groups	in	Verilog.	These	are	logical,

arithmetic,	shift,	concatenate,	replicate,	and	condition.	We	will	introduce
arithmetic,	concatenation,	and	replication	operators	in	this	chapter.	The	rest	will
be	introduced	in	the	following	chapters.	We	will	analyze	the	FPGA
implementation	details	of	operations	considered	here	in	Sec.	6.11.

Listing	6.1	Basic	Vector	Operations	in	Verilog

Listing	6.2	Testbench	File	for	Basic	Vector	Operations	in	Verilog

6.7.1	Arithmetic	Operators
Verilog	has	five	arithmetic	operations	as	addition	(+),	subtraction	(-),

multiplication	(*),	division	(/),	and	modulus	(%).	All	these	operations	can	be
performed	on	vectors	with	user-defined	size.	Hence,	these	can	be	called	fixed-
point	operations	with	user-defined	format.	When	result	of	an	operation	becomes
negative,	it	is	represented	in	two’s	complement	form.
Let’s	give	basic	examples	on	the	usage	of	arithmetic	operations.	The	first

example	is	on	arithmetic	operations	by	using	a	vector	input	and	constant	defined
as	a	parameter.	We	provide	the	corresponding	Verilog	description	in	Listing	6.3.
Here,	five	arithmetic	operations	(addition,	subtraction,	multiplication,	division,
and	modulus)	are	applied	on	the	constant	coef=8’h02	and	input	vector	num.
Dataflow	modeling	is	used	in	describing	these	operations.	We	provide	the	RTL
schematic	of	the	description	in	Fig.	6.3.	As	can	be	seen	in	this	figure,	constant
values	are	taken	as	fixed	voltage	levels	in	the	schematic.

FIGURE	6.3	RTL	schematic	of	arithmetic	operations	on	a	constant	and	vector.

To	explain	working	principles	of	arithmetic	operations	including	a	constant,
we	provide	the	testbench	file	in	Listing	6.4.	Here,	input	vector	to	be	processed	is
taken	as	8’h07.	Arithmetic	operation	results	are	provided	(in	hexadecimal	form)
in	Fig.	6.4.	As	can	be	seen	in	this	figure,	only	the	integer	part	of	the	division
operation	is	kept.	Besides,	obtained	results	are	as	expected.

FIGURE	6.4	Result	of	arithmetic	operations	on	a	constant	and	vector	in	Verilog.

The	second	example	on	arithmetic	operations	is	based	on	examples	(on	two
eightbit	numbers)	in	Sec.	6.5.	Here,	again	five	arithmetic	operations	are	applied
on	two	eightbit	input	vectors	num1	and	num2.	We	provide	the	corresponding
Verilog	description	in	Listing	6.5.	Dataflow	modeling	is	used	in	describing	these
operations.	Note	that	the	multiplication	result	is	represented	by	a	14-bit	vector	in
the	description.	The	reader	can	also	use	a	16-bit	vector	as	well.	We	provide	the
RTL	schematic	of	the	description	in	Fig.	6.5.	As	can	be	seen	in	this	figure,	all
arithmetic	operations	are	represented	as	basic	blocks.

FIGURE	6.5	RTL	schematic	of	arithmetic	operations	on	two	vectors	in	Verilog.

To	be	consistent	with	the	examples	in	Sec.	6.5,	we	construct	the	testbench	file
in	Listing	6.6.	Here,	the	two	vectors	are	taken	as	8’b00001110	and	8’b00100111.
Arithmetic	operation	results	are	provided	in	Fig.	6.6.	As	can	be	seen	in	this
figure,	the	negative	result	is	represented	in	two’s	complement	form.	Also,	only
integer	part	of	the	division	operation	is	given.	Besides,	the	reader	can	observe
that	results	obtained	here	are	the	same	as	in	Sec.	6.5.

FIGURE	6.6	Result	of	arithmetic	operations	on	two	eightbit	vectors	in	Verilog.

The	third	example	on	arithmetic	operations	is	based	on	examples	(on	fixed-
point	numbers	with	UQ8.4	format)	in	Sec.	6.5.	Here,	fixed-point	numbers	are
represented	by	two	12-bit	input	vectors	num1	and	num2.	We	provide	the
corresponding	Verilog	description	in	Listing	6.7.	Note	that	the	multiplication
result	is	represented	by	a	24-bit	vector	in	the	description.	The	RTL	schematic	of
this	description	is	the	same	as	in	Fig.	6.5.	Only	the	number	of	wires	used	in
operations	differ.

Listing	6.3	Arithmetic	Operations	on	a	Constant	and	Vector	in	Verilog

To	be	consistent	with	the	fixed-point	arithmetic	examples	in	Sec.	6.5,	we
construct	the	testbench	file	in	Listing	6.8.	Here,	the	two	vectors	are	taken	as
12’b000011100010	and	12’b001001110110.	Arithmetic	operation	results	are
provided	in	Fig.	6.7.	As	in	the	previous	example,	the	reader	can	observe	that
results	obtained	here	are	the	same	as	in	Sec.	6.5.

FIGURE	6.7	Result	of	arithmetic	operations	on	two	12-bit	vectors	in	Verilog.

As	can	be	seen	in	all	these	examples,	arithmetic	operations	can	be	performed
without	any	difficulty	in	Verilog.	Therefore,	we	will	not	explore	dedicated
arithmetic	operation	circuits	in	the	following	chapters.	We	should	warn	the
reader	about	multiplication	and	division	operations	at	this	point.	Although	these
operations	can	be	performed,	they	heavily	dissipate	the	FPGA	resources.	We
will	see	this	resource	dissipation	by	actual	examples	in	Sec.	6.11.	Therefore,
multiplication	and	division	operations	should	be	avoided	whenever	possible.

6.7.2	Concatenation	and	Replication	Operators
The	concatenation	operator	in	Verilog	allows	merging	two	or	more	vectors.

This	is	done	by	the	curly	bracket.	Let’s	give	an	example.	Assume	that	we	want
to	merge	two	vectors	num1	and	num2.	We	can	do	this	by	{num1,	num2}.	The
replication	operation	can	be	used	to	copy	a	vector	multiple	times	to	generate	a
new	vector.	This	can	be	done	by	n{num1}	where	n	is	the	duplication	number.

Listing	6.4	Testbench	File	for	Arithmetic	Operations	on	a	Constant	and
Vector	in	Verilog

Listing	6.5	Arithmetic	Operations	on	Two	Eightbit	Vectors	in	Verilog

Listing	6.6	Testbench	File	for	Arithmetic	Operations	on	Two	Eightbit	Vectors
in	Verilog

Listing	6.7	Arithmetic	Operations	on	Two	12-bit	Vectors	in	Verilog

We	provide	dataflow	model	of	concatenation	and	replication	operations	on
vectors	in	Listing	6.9.	Here,	first	two	vectors	num1	and	num2	are	concatenated.
Then,	the	replicate	of	the	vector	num1	is	generated	twice.	The	RTL	schematic	of
these	operations	are	as	in	Fig.	6.8.	As	can	be	seen	in	this	figure,	concatenation
and	replication	operations	are	implemented	by	using	wiring	between	input	and
output	ports.

FIGURE	6.8	RTL	schematic	of	concatenation	and	replication	operations.

Listing	6.8	Testbench	File	for	Arithmetic	Operations	on	Two	12-bit	Vectors
in	Verilog

We	provide	the	testbench	file	in	Listing	6.10	to	explain	concatenation	and
replication	operations	on	an	example.	Here,	the	two	vectors	are	taken	as	8’hFA
and	8’h0F.	Concatenation	and	replication	operation	results	are	provided	in	Fig.
6.9.	The	reader	can	see	how	both	operations	resulted	there.

FIGURE	6.9	Result	of	concatenation	and	replication	operations	in	Verilog.

6.8	Data	Types	in	VHDL
As	in	Verilog,	we	should	know	data	types	in	VHDL.	Hence,	they	can	be	used

in	processing	data	in	digital	systems.	In	this	section,	we	will	introduce	data	types
and	their	usage	for	this	purpose.

Listing	6.9	Concatenation	and	Replication	Operations	in	Verilog

Listing	6.10	Testbench	File	for	Concatenation	and	Replication	Operations	in
Verilog

6.8.1	Signal	and	Variable	Data	Types
A	value	in	a	digital	system	can	be	basically	represented	either	as	a	signal	or

variable	in	VHDL.	The	signal	data	type	is	similar	to	the	wire	in	Verilog.
Hence,	it	can	be	used	to	connect	two	elements.	The	signal	(with	its	assigned
type)	can	be	defined	as	signal	signal_name	:	signal_type.	The	variable
data	type	in	VHDL	is	similar	to	the	one	in	Verilog.	However,	it	is	generally	used
in	storing	intermediate	values	and	loop	counters.	Therefore,	we	will	provide	its
usage	in	the	following	chapters	when	needed.
The	signal	should	have	an	associated	type	which	defines	values	that	can	be

taken	by	it.	Although	there	are	several	signal	types	in	VHDL,	we	will	use	four	of
them	at	this	level	as	std_logic,	std_logic_vector,	signed,	and	unsigned.	We
may	introduce	new	types	in	the	following	chapters	if	needed.
The	std_logic	type	is	for	bitwise	representations.	Related	to	it,	the

std_logic_	vector	type	is	for	an	array	of	bits	to	be	explored	in	detail	in	Sec.
6.8.5.	To	use	std_logic	and	std_logic_vector	types,	we	should	include	the
ieee	library	in	the	description.	We	should	also	add	the	use
ieee.std_logic_1164.all	line	to	the	description.

Signed	and	unsigned	types	have	the	same	properties	as	std_logic_vector.

However,	they	are	specifically	used	in	arithmetic	operations	to	be	introduced	in
Sec.	6.9.	To	use	signed	and	unsigned	types,	we	should	include	the	ieee	library
in	the	description.	We	should	also	add	the	use	ieee.numeric_std.all	line	to
the	description.

6.8.2	Data	Values
Std_logic	data	type	has	nine	different	values.	We	will	use	the	following	four

values	throughout	the	book:

0	corresponds	to	logic	level	zero.
1	corresponds	to	logic	level	one.
-	represents	the	undefined	logic	level.
z	represents	high	impedance.

We	are	familiar	with	logic	level	zero	and	one	from	previous	chapters.	The
undefined	logic	level,	-,	is	used	in	logical	operations	when	the	corresponding
value	is	unknown	or	it	does	not	affect	the	operation.	For	the	second	case,	-	is
most	of	the	times	called	“don’t	care”	condition.	The	high	impedance	value	z
indicates	that	connection	at	that	point	is	disabled.	In	other	words,	an	open	circuit
is	present	at	that	location.	Std_logic_vector,	signed,	and	unsigned	types	also
use	the	mentioned	data	values.

6.8.3	Naming	a	Signal	or	Variable
As	in	Verilog,	the	user	can	select	a	wide	range	of	names	for	a	signal	or

variable	in	VHDL.	However,	a	VHDL	keyword	cannot	be	used	as	a	name.
Besides,	the	name	should	begin	with	a	letter.	It	cannot	end	with	an	underscore	or
it	cannot	have	two	successive	underscores.	Unlike	Verilog,	VHDL	is	not	case
sensitive.	Therefore,	the	reader	should	take	this	into	account	while	defining	a
name.	Meaningful	and	representative	names	should	be	picked	for	assignment	to
increase	the	readability	of	a	VHDL	description.

6.8.4	Defining	Constants
A	constant	can	be	defined	to	represent	a	value	in	VHDL.	This	is	done	to

improve	the	readability	of	description.	Structure	of	a	constant	declaration	is
constant	constant_	name	:	type_name	:=	value.	Here,	if	the	value	is	one
bit,	then	it	should	be	represented	between	apostrophes	as	`0’	or	`1’.	If	the	value
has	more	than	one	bit,	then	it	should	be	represented	between	double	quotes	as
“0101”.	Moreover,	we	can	use	the	format	x“value”	or	o“value”	to	represent	the

hexadecimal	and	octal	values,	respectively.	For	example,	the	binary	value
“0101”	can	also	be	represented	as	x“5”	as	hexadecimal.

6.8.5	Defining	Arrays
In	VHDL,	we	can	use	std_logic_vector,	signed,	and	unsigned	types	to

represent	bit	arrays.	The	signal	array	(with	its	assigned	type)	can	be	defined	as
signal	array_	name	:	array_type	(low	to	high)	or	signal	array_name	:
array_type	(high	downto	low).	Here,	low	and	high	values	indicate	the	array’s
first	and	last	index	values.
Each	array	entry	can	be	reached	in	VHDL.	Let’s	give	an	example	for	this

operation.	Assume	we	define	an	array	in1	as	signal	in1	:	std_logic_vector
(7	downto	0).	Here,	in1	represents	all	eight	bits	at	once.	in1(7)	represents	the
MSB.	in1(0)	represents	the	LSB.	We	can	also	change	the	order	of	bits	in
representing	an	array.	To	do	so,	we	should	redefine	the	array	in1	as	signal	in1
:	std_logic_vector	(0	to	7).	Now,	the	MSB	will	be	represented	by	in1(0).
The	LSB	will	be	represented	by	in1(7).
We	next	provide	the	VHDL	description	as	an	example	of	array	operations	in

Listing	6.11.	Here,	first	a	specific	array	entry	is	selected.	Then,	subpart	of	the
array	is	selected.	Finally,	the	array	bit	order	is	reversed.	Dataflow	modeling	is
used	in	describing	these	operations.	The	RTL	schematic	of	this	description	is	the
same	as	in	Fig.	6.1.	As	can	be	seen	in	this	figure,	array	operations	are	performed
by	wiring	input	and	output	ports	only.
To	explain	working	principles	of	array	operations,	we	provide	the	testbench

file	in	Listing	6.12.	Here,	input	array	to	be	processed	is	taken	as	“11111010”.
Array	operation	results	will	be	as	in	Fig.	6.2.	These	results	indicate	that	array
entries	can	be	processed	as	desired	in	VHDL.

Listing	6.11	Basic	Array	Operations	in	VHDL

Listing	6.12	Testbench	File	for	Basic	Array	Operations	in	VHDL

6.9	Operators	in	VHDL
There	are	basically	five	operator	groups	in	VHDL.	These	are	arithmetic,

relational,	shift	and	rotate,	concatenation,	and	logical	operators.	We	will
introduce	arithmetic	and	concatenation	operators	in	this	chapter.	The	rest	will	be
introduced	in	the	following	chapters.

6.9.1	Arithmetic	Operators
We	will	use	seven	arithmetic	operators	in	VHDL	throughout	the	book.	These

are	absolute	value	(abs),	multiplication	(∗),	division	(/),	modulus	(mod),
remainder	(rem),	addition	(+),	and	subtraction	(-).	Except	abs,	all	arithmetic
operations	are	performed	on	signed	or	unsigned	numbers.	Obtained	result	from
these	operations	will	also	be	either	a	signed	or	unsigned	number.	The	abs	needs
a	signed	number	to	operate.	As	in	Verilog,	when	the	result	of	an	operation	is
negative,	it	is	represented	in	two’s	complement	form	in	VHDL.	Note	that
addition	and	subtraction	operations	can	also	be	applied	to	signals	defined	by
std_logic_vector.
Let’s	give	three	examples	on	the	usage	of	arithmetic	operations.	The	first

example	is	on	arithmetic	operations	using	an	array	input	and	constant.	We
provide	the	VHDL	description	in	Listing	6.13.	Here,	three	arithmetic	operations
(addition,	subtraction,	and	multiplication)	are	applied	on	a	constant	coef	and
input	array	num.	Here,	the	constant	is	defined	as	“00000010”.	Dataflow	modeling
is	used	in	describing	these	operations.	This	description	is	the	VDHL	version	of
the	one	given	in	Listing	6.3.

Listing	6.13	Arithmetic	Operations	on	a	Constant	and	Array	in	VHDL

To	explain	working	principles	of	arithmetic	operations	including	a	constant,
we	provide	the	testbench	file	in	Listing	6.14.	Here,	the	input	array	to	be
processed	is	taken	as	“0000111”.	Arithmetic	operation	results	obtained	will	be
the	same	as	in	Fig.	6.4.
The	second	example	is	arithmetic	operations	based	on	examples	(on	two

eightbit	numbers)	in	Sec.	6.5.	Here,	six	arithmetic	operations	(addition,
subtraction,	multiplication,	division,	modulus,	and	remainder)	are	applied	on	two
eightbit	input	arrays	num1	and	num2.	We	provide	the	corresponding	VHDL
description	in	Listing	6.15.	Dataflow	modeling	is	used	in	describing	these
operations.	This	description	is	the	VDHL	version	of	the	one	given	in	Listing	6.5.
We	provide	the	RTL	schematic	of	the	VHDL	description	in	Fig.	6.10.	As	can	be
seen	in	this	figure,	all	arithmetic	operations	are	represented	as	basic	blocks.

FIGURE	6.10	RTL	schematic	of	arithmetic	operations	on	two	arrays.

Listing	6.14	Testbench	File	for	Arithmetic	Operations	on	a	Constant	and
Array	in	VHDL

Listing	6.15	Arithmetic	Operations	on	Two	Eightbit	Arrays	in	VHDL

To	be	consistent	with	examples	in	Sec.	6.5,	we	construct	the	testbench	file	in
Listing	6.16.	Here,	the	two	eightbit	arrays	are	taken	as	“00001110”	and

“00100111”.	Arithmetic	operation	results	are	provided	in	Fig.	6.11.	These	are	the
same	as	in	Fig.	6.6.	Besides,	the	reader	can	observe	that	results	obtained	here	are
the	same	as	in	Sec.	6.5.

FIGURE	6.11	Result	of	arithmetic	operations	on	two	eightbit	arrays	in	VHDL.

The	third	example	is	arithmetic	operations	based	on	examples	(on	fixed-point
numbers	with	UQ8.4	format)	in	Sec.	6.5.	Here,	fixed-point	numbers	are
represented	by	two	12-bit	input	arrays	num1	and	num2.	We	provide	the
corresponding	VHDL	description	in	Listing	6.17.	This	description	is	VDHL
version	of	the	one	in	Listing	6.7.	The	RTL	schematic	of	this	description	is	the
same	as	in	Fig.	6.10.	Only	number	of	wires	used	in	operations	differ.
To	be	consistent	with	fixed-point	arithmetic	operation	examples	in	Sec.	6.5,

we	construct	the	testbench	file	in	Listing	6.18.	Here,	two	arrays	are	taken	as
“000011100010”	and	“001001110110”.	Arithmetic	operation	results	are	provided
in	Fig.	6.12.	As	in	the	previous	example,	the	reader	can	observe	that	results
obtained	here	are	the	same	as	in	Sec.	6.5.

FIGURE	6.12	Result	of	arithmetic	operations	on	two	12-bit	arrays	in	VHDL.

Similar	to	Verilog,	all	arithmetic	operations	can	be	performed	without	any
difficulty	in	VHDL	as	can	be	seen	in	Listing	6.15.	Therefore,	we	will	not
explore	dedicated	arithmetic	operation	circuits	in	the	following	chapters.	We
should	warn	the	reader	about	multiplication	and	division	operations	at	this	point.
Although	these	operations	can	be	performed,	they	heavily	dissipate	the	FPGA
resources.	Therefore,	multiplication	and	division	operations	should	be	avoided
whenever	possible.

6.9.2	Concatenation	Operator
The	concatenation	operator	in	VHDL	allows	merging	two	or	more	arrays.

This	is	done	by	the	&	operator.	Let’s	give	an	example.	Assume	that	we	want	to
merge	two	arrays	num1	and	num2.	We	can	do	this	by	num1&num2.
We	provide	dataflow	model	of	concatenation	operation	on	arrays	in	Listing

6.19.	Here,	two	arrays	num1	and	num2	are	concatenated.	The	RTL	schematic	of
this	description	is	a	part	of	Fig.	6.8.

Listing	6.16	Testbench	File	for	Arithmetic	Operations	on	Two	Eightbit
Arrays	in	VHDL

Listing	6.17	Arithmetic	Operations	on	Two	12-bit	Arrays	in	VHDL

Listing	6.18	Testbench	File	for	Arithmetic	Operations	on	Two	12-bit	Arrays
in	VHDL

Listing	6.19	Concatenation	Operation	in	VHDL

We	provide	the	testbench	file	in	Listing	6.20	to	explain	the	concatenation
operation	on	an	example.	Here,	two	arrays	are	taken	as	“11111010”	and
“00001111”.	The	obtained	result	will	be	the	same	as	in	Fig.	6.9.

6.10	Application	on	Data	Types	and	Operators
In	this	section,	we	will	construct	a	primitive	calculator	to	add,	subtract,

multiply,	and	divide	two	four-bit	numbers	on	the	Basys3	board.	Input	bits	and
the	operation	type	is	represented	by	switches	on	the	board.	Output	bit	values	are
represented	by	LEDs	on	the	board.	The	reader	can	consult	Sec.	4.8	related	to	this
setup.	In	Listing	6.21,	we	provide	Verilog	description	of	the	calculator.

6.11	FPGA	Building	Blocks	Used	in	Data	Types	and
Operators
We	introduced	several	operators	to	process	data	in	this	chapter.	The	aim	here

is	trying	to	show	the	reader	how	these	are	implemented	in	an	FPGA.	Therefore,
he	or	she	can	grasp	the	fundamental	idea	in	using	this	device.	Note	that	the
FPGA	implementations	provided	in	this	section	are	not	unique.	They	are	the
ones	provided	by	Vivado.	In	other	words,	we	are	bound	by	Vivado’s
optimization	tools	in	generating	these	implementations.

Listing	6.20	Testbench	File	for	Concatenation	Operation	in	VHDL

In	this	section,	we	picked	Verilog	descriptions	used	in	the	chapter.	The	reader
may	also	test	VHDL	descriptions.	However,	we	do	not	expect	them	to	be	totally
different	than	the	ones	given	here.

6.11.1	Implementation	Details	of	Vector	Operations
We	first	focus	on	vector	operations	in	Listing	6.1.	To	show	implementation

details	on	this	description,	let’s	set	the	input	vector	length	to	four	as	input
[3:0]	num1.	With	this	new	form,	a	specific	vector	entry	is	selected	(assign
res1=num1[2]),	subpart	of	a	vector	is	selected	(assign	res2=num1[3:2]),	and
vector	bit	order	is	reversed.	After	synthesizing	the	modified	description	in

Vivado,	its	schematic	will	be	as	in	Fig.	6.13.

FIGURE	6.13	FPGA	implementation	of	vector	operations.

As	can	be	seen	in	Fig.	6.13,	11	input/output	ports	are	used	in	the
implementation.	Besides,	each	input	or	output	port	has	an	associated	buffer	with
it.	Moreover,	only	wiring	is	done	between	input	and	output	ports.	Therefore,	this
implementation	only	uses	input/output	blocks	and	interconnect	resources	from
the	FPGA	building	blocks	introduced	in	Sec.	2.2.

Listing	6.21	Calculator	Implemented	on	the	Basys3	Board	in	Verilog

Listing	6.22	Enforcing	Vivado	to	Use	DSP	Block	in	Arithmetic	Operations	in
Verilog

Listing	6.23	Enforcing	Vivado	to	Use	DSP	Block	in	Arithmetic	Operations	in
VHDL

Implementation	schematic	should	emphasize	that	no	variable	or	memory
element	is	used	in	the	design	as	in	a	programming	language.	Only	wires	and
ports	are	used.	This	is	also	the	case	for	concatenation	and	replication	operations
in	Listing	6.9.

6.11.2	Implementation	Details	of	Arithmetic	Operations
Implementing	arithmetic	operations	in	the	FPGA	is	an	important	topic	by

itself.	Therefore,	let’s	closely	analyze	implementation	details	of	the	description
in	Listing	6.5.	To	understand	how	Vivado	implements	arithmetic	operations,
let’s	first	focus	on	the	addition	operation.	As	in	the	previous	section,	let’s	apply
addition	on	two	two-bit	vectors.	Schematic	of	the	description	after	synthesis	will
be	as	in	Fig.	6.14.	As	can	be	seen	in	this	figure,	the	addition	operation	is
implemented	by	two	LUTs	in	the	FPGA.

FIGURE	6.14	FPGA	implementation	of	addition	operation.

The	architecture	in	Fig.	6.14	is	kept	when	subtraction,	multiplication,	and
division	operations	are	implemented.	However,	the	reader	should	remember	that
these	operations	are	done	on	two	vectors	each	having	two	bits.	If	the	vector
length	is	increased,	resource	usage	difference	between	arithmetic	operations
become	more	apparent.	For	example,	when	eightbit	addition,	subtraction,
multiplication,	and	division	operations	in	Listing	6.5	are	implemented
separately,	addition	and	subtraction	operations	will	need	eight	LUTs.	However,
multiplication	and	division	operations	will	need	67	and	69	LUTs,	respectively.
Moreover,	if	the	bit	length	is	increased	to	12	as	in	Listing	6.7,	then	addition	and
subtraction	operations	will	need	12	LUTs.	The	multiplication	operation	will
need	one	DSP	block.	The	division	operation	will	need	155	LUTs.	Hence,	the
multiplication	and	division	operation	implementations	need	extensive	number	of
LUTs	or	DSP	blocks.	Note	that	LUT	and	DSP	usage	numbers	are	obtained	using
tools	in	Sec.	4.3.
We	can	enforce	Vivado	to	synthesize	arithmetic	operations	using	DSP	blocks.

The	way	to	do	this	in	Verilog	is	adding	attribute	(*	use_dsp48=“yes”	*)	in
front	of	the	module	to	be	handled	this	way.	We	provide	such	an	example	in
Listing	6.22.	Here,	the	addition	operation	is	implemented	using	the	DSP	block.
In	VHDL,	the	same	operation	can	be	done	by	adding	an	attribute	in	the	port
definition	part.	We	provide	such	an	addition	example	in	Listing	6.23.	More
information	on	this	topic	can	be	found	in	[28].
We	can	summarize	basic	findings	in	this	section	as	follows.	Arithmetic

operations	are	implemented	either	using	CLBs	or	DSP	blocks	in	the	FPGA.
Besides,	interconnect	resources	and	input/output	blocks	are	needed	during
implementation.	There	is	one	important	issue.	Size	of	data	to	be	processed
directly	affects	the	resource	usage.	Related	to	this,	multiplication	and	division
operations	may	require	heavy	resource	usage	when	data	size	increases.

6.12	Summary
We	introduced	key	data	type	and	operator	concepts	in	this	chapter.	While

doing	this,	we	first	explored	number	representations,	negative	numbers,	and
fixed-and	floating-point	numbers	from	a	generic	point	of	view.	Then,	we
explored	binary	arithmetic	operations.	We	next	explored	all	of	these	concepts
using	HDLs.	We	postponed	floating-point	operation	implementation	in	HDL
descriptions	till	Chap.	13	since	it	requires	advanced	tools.	We	also	analyzed
HDL	descriptions	introduced	in	this	chapter	from	an	FPGA	implementation
perspective.	The	idea	here	was	to	give	an	insight	how	these	descriptions	are
implemented	in	the	FPGA.	We	will	also	apply	the	same	methodology	in	the
following	chapters.

6.13	Exercises
6.1			Find	the	fixed-point	representation	of	number	315.2342	in	formats	a.
UQ16.

b.	UQ.16
c.	UQ16.16

6.2			Find	the	fixed-point	representation	of	numbers	−315.2342	and
315.2342	in	formats	a.	Q15.

b.	Q.15
c.	Q15.16.

6.3			You	have	four	numbers	as	13.25,	15.50,	17.50,	and	19.25.	Find	the
hexadecimal	representation	of	these	numbers	in	fixed-point	UQ16.16
format.
6.4			Find	the	floating-point	representation	of	numbers	−315.2342	and
315.2342	in	formats

a.	half
b.	single
c.	double

6.5			We	will	only	have	an	approximation	in	representing	the	number
8751.135	in	half	floating-point	form.	What	is	the	difference	between	the
actual	number	and	this	approximation?
6.6			Find	the	floating-point	representation	of	the	number	8751.135	in	single
form.	Will	there	be	an	approximation	here?
6.7			Find	the	floating-point	representation	of	π	in	half	form.

6.8			The	ASCII	codes	given	in	Table	6.6	are	called	regular.	What	happens
if	we	want	to	represent	regional	characters	like	ü,	ü	and	ç?
6.9			Two	16-bit	numbers	are	taken	as	FFFF	and	0005	in	hexadecimal	form.
Write	a	Verilog	or	VHDL	description	and	its	testbench	to	implement	and
simulate	below	operations.

a.	FFFF+0005
b.	FFFF-0005
c.	0005-FFFF

6.10			We	know	that	only	lowercase	characters	enter	a	system.	Write	a	Verilog
or	VHDL	module	to	convert	each	entry	to	uppercase	form.	Simulate	the
result	by	forming	a	testbench	file.

6.11			Vivado	offers	an	IP	block	called	Adder/Subtracter	in	its	IP	Catalog.	Use	it
to	implement	addition	and	subtraction	operations	in	previous	exercises	in
Verilog	or	VHDL.

6.12			What	will	be	the	value	of	y2,	y1,	y0	when	the	below	Verilog	description	is
simulated?	The	input	is	set	as	x=8h’4F	for	simulation.

6.13			Form	a	Verilog	description	in	behavioral	modeling	to	calculate	cube	of	a
given	number.	Only	one	multiplication	operation	can	be	used	at	once.

a.	use	nonblocking	assignments	b.	use	blocking	assignments

a.	use	nonblocking	assignments	b.	use	blocking	assignments
6.14			(Joystick	application.)A	two-axis	joystick	provides	analog	voltage	values

corresponding	to	its	horizontal	(x-axis)	and	vertical	(y-axis)	position	when
an	analog	interfacing	is	done.	These	analog	voltage	values	can	be
converted	to	digital	form	by	an	analog-to-digital	converter	(ADC)	module.
Assume	that	the	analog	interfacing	is	done	and	the	ADC	module	is	set	to
work.	Hence,	you	get	two	vectors	as	xp	and	yp	each	with	12	bits	each.	We
will	take	the	most	significant	eight	bits	for	xp	and	yp.	Hence,	sample
hexadecimal	values	of	these	vectors	with	respect	to	joystick	position	are	as
in	Fig.	6.15.

FIGURE	6.15				Sample	readings	from	the	joystick.

We	will	use	LEDs	and	switches	on	the	Basys3	board	for	our
operation.	Therefore,	LEDs	and	switches	15	to	8	are	assigned	to
the	vertical	position	(yp	array)	reading.	LEDs	and	switches	7	to	0
are	assigned	to	the	horizontal	position	(xp	array)	reading.
a.	Form	a	Verilog	or	VHDL	description	to	display	the	values	of
joystick	axes	directly	via	designated	LEDs.
b.	Let’s	design	a	simple	game	using	our	setup.	The	first	user
forms	a	16-bit	pattern	with	setting	each	switch	as	on	or	off.	The
second	user	(without	seeing	this	pattern)	tries	to	match	this
pattern	by	moving	the	joystick	in	x-and	y-axes.	When	the	second
user	matches	the	pattern	with	the	joystick	position,	all	LEDs	will
turn	off.	Form	a	Verilog	or	VHDL	description	to	realize	this
game.

game.

CHAPTER	7

Combinational	Circuits

Adigital	system	can	be	implemented	in	two	forms.	In	the	first	one,	output
depends	on	current	input	only.	This	form	can	be	realized	by	combinational
circuits,	which	is	the	main	topic	of	this	chapter.	In	the	second	form,	output
depends	on	past	input	or	output	values	besides	the	current	input.	This	form	can
be	realized	by	sequential	circuits,	which	will	be	introduced	in	Chap.	10.
A	combinational	circuit	is	composed	of	logic	gates	to	perform	a	specific	task.

To	understand	the	working	principles	of	a	combinational	circuit,	we	will	start
with	basic	definitions.	Then,	we	will	review	logic	gates	from	a	combinational
circuit	perspective.	Afterward,	we	will	introduce	tools	to	analyze	combinational
circuits.	Related	to	this,	we	will	explore	how	a	combinational	circuit	can	be
implemented	in	an	field-programmable	gate	array	(FPGA).	Then,	we	will
evaluate	combinational	circuit	design	steps.	We	will	also	provide	sample	designs
so	that	the	reader	can	grasp	the	idea	in	designing	such	a	circuit.	We	will	finally
summarize	how	FPGA	building	blocks	are	used	in	combinational	circuit
implementation.

7.1	Basic	Definitions
Before	going	further,	we	should	make	basic	definitions	which	will	be	used

throughout	the	book.	Let’s	start	with	defining	binary	variable.

7.1.1	Binary	Variable
While	analyzing	or	designing	a	combinational	circuit,	logic	level	at	certain

location	may	be	needed.	To	represent	this	value	in	generic	form,	we	will	assign	a
binary	variable	at	that	location.	This	variable	can	only	take	either	logic	level	zero
or	one	by	its	definition.	Since	we	will	be	extensively	using	these	logic	levels	for
binary	variables,	we	will	call	them	as	0	and	1	from	this	point	on.
The	customary	way	to	represent	a	binary	variable	is	using	characters.

Throughout	the	book,	we	will	adopt	the	same	methodology	by	using	characters

such	as	x,	y,	and	z	for	this	purpose.	Therefore,	we	can	represent	value	of	a	binary
variable	as	x	=	1	or	x	=	0.

7.1.2	Logic	Function
A	logic	function	by	its	definition	is	formed	of	logic	gates	operating	on	binary

variables.	To	be	more	specific,	inputs	of	a	logic	function	are	defined	as	binary
variables.	Then,	logic	gates	operating	on	these	produce	output,	again	as	a	binary
variable.	This	will	allow	us	to	represent	a	combinational	circuit	in	formal	way.
We	will	represent	a	logic	function	by	capital	letter	throughout	the	book.	One

such	example	is	z	=	F(x,	y).	Here,	the	logic	function	F	is	defined	on	two	binary
variables	x	and	y.	Output	of	the	function	is	another	binary	variable	z.	Depending
on	the	definition	of	the	logic	function	F,	z	will	be	represented	in	terms	of	binary
variables	x	and	y.

7.1.3	Truth	Table
One	way	of	describing	input/output	characteristics	of	a	logic	function	is	by

forming	its	truth	table	which	will	tabulate	all	input	combinations	on	its	left-hand
side.	For	each	input	combination,	corresponding	output	will	be	provided	on	the
right-hand	side	of	the	table.	Hence,	a	generic	truth	table	will	be	as	in	Table	7.1.

TABLE	7.1	Generic	Truth	Table

Let’s	assume	that	the	logic	function	(or	corresponding	combinational	circuit)
has	N	input	variables.	Since	each	binary	variable	can	take	two	values,	total
number	of	input	combinations	will	be	2N.	The	truth	table	should	tabulate	all
these	combinations.	Output	of	the	logic	function	for	each	input	combination	is
either	0	or	1.	Therefore,	the	truth	table	describes	combinational	circuit
characteristics	precisely.	In	other	words,	we	know	how	the	combinational	circuit
behaves	for	any	given	input.	Hence,	the	truth	table	will	be	our	main	tool	in
analyzing	and	designing	combinational	circuits.

7.2	Logic	Gates
We	have	introduced	logic	gates	as	digital	electronic	devices	in	Sec.	2.1.	Here,

we	review	them	by	focusing	on	their	combinational	characteristics.	Moreover,
we	provide	hardware	description	language	(HDL)	description	of	all	logic	gates
considered	here.

7.2.1	The	NOT	Gate
NOT	is	the	first	logic	gate	to	be	considered.	It	is	actually	an	inverter	with

single	input	and	output.	Let’s	assume	that	input	to	the	NOT	gate	is	represented
by	binary	variable	x;	and	let	output	of	the	gate	be	binary	variable	y.	Then,	the
NOT	gate	can	be	represented	by	the	logic	function	y	=	x.	Truth	table	of	the	NOT
gate	based	on	this	logic	function	will	be	as	in	Table	7.2.	Symbol	of	the	NOT	gate
for	this	logic	function	is	as	in	Fig.	7.1.

TABLE	7.2	Truth	Table	of	the	NOT
Gate

FIGURE	7.1	Symbol	of	the	NOT	gate.

7.2.1.1	The	NOT	Gate	in	Verilog
The	NOT	gate	has	a	specific	keyword	not	for	structural	modeling	in	Verilog.

For	dataflow	and	behavioral	modeling,	operator	for	the	NOT	gate	is	“	∼	“.
Using	these,	we	can	describe	the	logic	function	y	=	x	in	Verilog	as	follows:

Here,	y	and	x	correspond	to	output	and	input	of	the	NOT	gate,	respectively.
We	named	the	NOT	gate	as	not_gate	in	structural	modeling.

7.2.1.2	The	NOT	Gate	in	VHDL
The	VHDL	keyword	for	the	NOT	gate	is	not.	Using	it,	we	can	describe	the

logic	function	y	=	 	as	follows:

7.2.2	The	OR	Gate
OR	is	the	second	logic	gate	to	be	considered.	It	may	have	two	or	more	inputs.

However,	the	gate	has	one	output.	The	working	principles	of	the	OR	gate	are	as
follows.	Whenever	any	of	its	inputs	has	value	1,	output	will	be	1.	Output	will	be
0	if	and	only	if	all	inputs	have	value	0.	To	represent	the	input/output
characteristics	of	the	OR	gate,	let’s	assume	it	has	two	inputs	as	binary	variables
x	and	y;	and	let	output	of	the	gate	be	binary	variable	z.	The	operator	to	represent
the	OR	gate	is	“	+	“.	Based	on	these,	the	two-input	OR	gate	can	be	represented
by	the	logic	function	z	=	x	+	y.	The	truth	table	of	the	OR	gate	based	on	this	logic

function	will	be	as	in	Table	7.3.	The	symbol	of	the	OR	gate	for	this	logic
function	is	as	in	Fig.	7.2.

TABLE	7.3	Truth	Table	of	the

FIGURE	7.2	Symbol	of	the	OR	gate.

FIGURE	7.3	Symbol	of	the	NOR	gate.

A	NOT	gate	can	be	connected	to	output	of	the	OR	gate.	This	combination
forms	the	NOR	(NOT-OR)	gate.	As	in	the	OR	gate,	let’s	assume	inputs	of	this
gate	be	represented	by	binary	variables	x	and	y;	and	let	output	of	the	gate	be
binary	variable	z.	Then,	the	two-input	NOR	gate	can	be	represented	by	the	logic
function	z	=	x	+	y.	The	truth	table	of	the	NOR	gate	based	on	this	logic	function
will	be	as	in	Table	7.3.	Only	out-put	values	will	be	inverted.	The	symbol	of	the
NOR	gate	for	this	logic	function	is	as	in	Fig.	7.3.

7.2.2.1	The	OR	Gate	in	Verilog
The	OR	gate	has	a	specific	keyword	or	for	structural	modeling	in	Verilog.	For

dataflow	and	behavioral	modeling,	the	operator	of	the	OR	gate	is	“	|	“.	Using
these,	we	can	describe	the	logic	function	z	=	x	+	y	in	Verilog	as	follows:

Here,	z	corresponds	to	output	of	the	OR	gate.	x	and	y	correspond	to	inputs	of
the	gate.	Note	that	we	can	increase	the	number	of	inputs	as	we	like.	In	structural
modeling,	we	named	the	OR	gate	as	or_gate.

7.2.2.2	The	OR	Gate	in	VHDL
The	VHDL	keyword	for	OR	gate	is	or.	Using	it,	we	can	describe	the	logic

function	z	=	x	+	y	as	follows:

7.2.3	The	AND	Gate
AND	is	the	third	logic	gate	to	be	considered.	As	in	the	OR	gate,	it	may	have

two	or	more	inputs.	However,	it	has	one	output.	The	working	principles	of	the
AND	gate	are	as	follows.	Whenever	all	of	its	inputs	have	value	1,	output	will	be
1.	Output	will	be	0	if	any	of	the	inputs	has	value	0.	To	represent	input/output

characteristics	of	the	AND	gate,	let’s	assume	two	inputs	as	binary	variables	x
and	y;	and	let	output	of	the	gate	be	binary	variable	z.	Operator	to	represent	the
AND	gate	is	“	·	“.	Based	on	these,	the	two-input	AND	gate	can	be	represented
by	the	logic	function	z	=	x	·	y.	The	truth	table	of	the	AND	gate	based	on	this
logic	function	will	be	as	in	Table	7.4.	The	symbol	of	the	AND	gate	for	this	logic
function	is	as	in	Fig.	7.4.

FIGURE	7.4	Symbol	of	the	AND	gate.

A	NOT	gate	can	be	connected	to	output	of	the	AND	gate.	This	combination
forms	the	NAND	gate.	As	in	the	AND	gate,	let’s	assume	input	to	this	gate	be
binary	variables	x	and	y;	and	output	of	the	gate	be	binary	variable	z.	Then,	the
two-input	NAND	gate	can	be	represented	by	the	logic	function	z	=	x	·	y.	The
truth	table	of	the	NAND	gate	based	on	this	logic	function	will	be	as	in	Table	7.4.
Only	output	values	will	be	inverted.	The	symbol	of	the	NAND	gate	for	this	logic
function	is	as	in	Fig.	7.5.

TABLE	7.4	Truth	Table	of	the	AND
Gate

FIGURE	7.5	Symbol	of	the	NAND	gate.

7.2.3.1	The	AND	Gate	in	Verilog
The	AND	gate	has	a	specific	keyword	and	for	structural	modeling	in	Verilog.

For	dataflow	and	behavioral	modeling,	the	operator	for	the	AND	gate	is	“	&	“.

Using	these,	we	can	describe	the	logic	function	z	=	x	·	y	in	Verilog	as	follows:

Here,	z	corresponds	to	output	of	the	AND	gate.	x	and	y	correspond	to	inputs
of	the	gate.	Note	that	we	can	increase	the	number	of	inputs	as	we	like.	In
structural	modeling,	we	named	the	AND	gate	as	and_gate.

7.2.3.2	The	AND	Gate	in	VHDL
The	VHDL	keyword	for	the	AND	gate	is	and.	Using	it,	we	can	describe	the

logic	function	z	=	x	·	y	as	follows:

7.2.4	The	XOR	Gate
The	fourth	and	final	logic	gate	to	be	considered	is	XOR	(Exclusive-OR).	This

gate	can	be	constructed	by	using	AND,	OR,	and	NOT	gates.	Therefore,	it	may	or

may	not	be	taken	as	a	fundamental	logic	gate.	However,	XOR	is	used	in
combinational	circuit	representation.	Therefore,	we	explore	it	in	this	section.	The
working	principles	of	the	XOR	gate	are	as	follows.	When	two	inputs	of	the	gate
have	the	same	logic	level	(either	0	or	1),	its	output	will	be	0.	Whenever	the	two
inputs	of	the	gate	have	different	logic	levels,	its	output	will	be	1.	To	represent
input/output	characteristics	of	the	XOR	gate	based	on	this	definition,	let’s
assume	two	inputs	as	binary	variables	x	and	y.	Let	output	of	the	gate	be	binary
variable	z.	Then,	two-input	XOR	gate	can	be	represented	by	the	logic	function	z
=	(x	·)	+	(·	y).	This	logic	function	can	be	simplified	by	using	the	“	 	“
operator	to	represent	the	XOR	gate	as	z	=	x	 	y.	The	truth	table	of	the	XOR	gate
based	on	this	logic	function	will	be	as	in	Table	7.5.	The	symbol	of	the	XOR	gate
for	this	logic	function	is	as	in	Fig.	7.6.

TABLE	7.5	Truth	Table	of	the	XOR
Gate

FIGURE	7.6	Symbol	of	the	XOR	gate.

7.2.4.1	The	XOR	Gate	in	Verilog
The	XOR	gate	has	a	specific	keyword	xor	for	structural	modeling	in	Verilog.

For	dataflow	and	behavioral	modeling,	the	operator	for	the	XOR	gate	is	“	ˆ	“.
Using	these,	we	can	describe	the	logic	function	z	=	x	 	y	in	Verilog	as	follows:

Here,	z	corresponds	to	output	of	the	XOR	gate.	x	and	y	correspond	to	inputs
of	the	gate.	In	structural	modeling,	we	named	the	XOR	gate	as	xor_gate.

7.2.4.2	The	XOR	Gate	in	VHDL
The	VHDL	keyword	for	the	XOR	gate	is	xor.	Using	it,	we	can	describe	the

logic	function	z	=	x	 	y	as	follows:

7.3	Combinational	Circuit	Analysis
Logic	gates	introduced	in	the	previous	section	can	be	used	to	construct

combinational	circuits.	To	understand	the	working	principles	of	a	combinational
circuit,	we	should	analyze	it.	Therefore,	we	should	first	form	a	logic	function
between	its	inputs	and	output(s).	If	needed,	we	can	also	form	the	truth	table	of
combinational	circuit	based	on	this	representation.	The	final	step	in	analysis	is
representing	the	combinational	circuit	by	less	(or	simpler)	elements,	which	is

representing	the	combinational	circuit	by	less	(or	simpler)	elements,	which	is
called	gate-level	minimization.

7.3.1	Logic	Function	Formation	between	Input	and	Output
The	first	step	in	analyzing	a	combinational	circuit	is	forming	the	logic

function	between	its	inputs	and	output(s).	Here,	we	assume	that	the
corresponding	circuit	diagram	is	at	hand.	Then,	we	should	“read”	this	diagram.
Let’s	give	a	simple	example.	Assume	that	a	combinational	circuit	has	been
designed	beforehand	by	discrete	logic	gates	as	in	Fig.	7.7.	We	would	like	to
form	the	corresponding	logic	function.

FIGURE	7.7	Circuit	diagram	of	a	combinational	circuit.

In	Fig.	7.7,	we	specifically	labeled	output	of	each	logic	gate	by	a	binary
variable.	Based	on	these,	we	can	represent	input/output	characteristics	of	the
combinational	circuit.	To	do	so,	we	first	obtain	output	of	each	logic	gate
separately	as	follows:

These	lead	to	input/output	characteristics	of	the	combinational	circuit	as
follows:

This	logic	function	can	be	implemented	by	an	HDL	in	an	FPGA.	However,

This	logic	function	can	be	implemented	by	an	HDL	in	an	FPGA.	However,
some	simplifications	can	be	done	on	it	before	its	implementation.	Next,	we	will
consider	how	this	can	be	done.

7.3.2	Boolean	Algebra
We	can	benefit	from	Boolean	algebra	for	gate-level	minimization.	Boolean

algebra	is	the	framework	to	represent	and	analyze	logic	functions	formed	by
binary	variables	and	logic	gates.	Boolean	algebra	can	be	explained	in	a	rigorous
way	using	mathematical	definitions.	However,	we	will	take	a	simpler	approach
in	this	book.	The	idea	is	to	cover	basic	definitions	of	Boolean	algebra	necessary
for	our	purposes.
First,	we	will	review	basic	identities	by	Boolean	algebra.	Let’s	assume	two

binary	variables	x	and	y.	We	can	define	identities	on	AND	and	OR	gates	as	in
Table	7.6.	Although	these	identities	can	be	justified	by	using	a	truth	table,	the
reader	can	consult	the	mentioned	reference	for	more	rigorous	proof	[29].
We	can	describe	Boolean	algebra	identities	in	Verilog	as	in	Listing	7.1.	Here,

the	out-put	of	identities	are	represented	by	two	arrays	y_or[3:0]	and
y_and[3:0].	Corresponding	VHDL	description	will	be	as	in	Listing	7.2.
Synthesis	result	of	the	Verilog	description	is	as	in	Fig.	7.8.	As	can	be	seen	in	this
figure,	Vivado’s	optimization	tool	actually	applied	Boolean	identities	such	that
outputs	are	simplified	accordingly.	Note	that	ground	and	supply	voltage	levels
are	represented	by	special	signs	in	this	figure.

FIGURE	7.8	Synthesis	result	of	Boolean	identities.

Next,	we	will	review	basic	Boolean	algebra	properties	on	AND,	OR,	and
NOT	gates	(or	operations	corresponding	to	them).	These	are	involution,
commutative,	associative,	distributive,	and	absorption	properties	and
DeMorgan’s	theorem	as	summarized	in	Table	7.7.	Involution	property	tells	us
that	applying	NOT	on	a	binary	variable	twice	gives	its	original	value.
Commutative	property	tells	us	that	the	order	of	variables	in	logic	gates	is	not
important.	Associative	property	tells	us	that	if	more	than	one	operation	is	done,
then	the	order	is	not	important.	Distributive	property	tells	us	that	AND	and	OR
operations	are	distributive	on	each	other.	As	the	name	implies,	absorption
property	discards	unnecessary	variables.	The	reader	can	remember	DeMorgan’s
theorem	as	follows.	If	the	NOT	operation	is	applied	on	an	AND	or	OR

operation,	inputs	will	be	inverted.	Moreover,	the	operation	will	be	changed	from
AND	to	OR	or	vice	versa.	Again,	rigorous	proof	of	these	properties	can	be	found
in	[29].

TABLE	7.6	Boolean	Algebra	Identities

Listing	7.1	Boolean	Identity	Operations	in	Verilog

Listing	7.2	Boolean	Identity	Operations	in	VHDL

TABLE	7.7	Boolean	Algebra
Properties	on	AND,	OR,	and	NOT
Operations

TABLE	7.8	Truth	Table	of	the
Combinational	Circuit	in	Fig.	7.7

7.3.3	Gate-Level	Minimization
Gate-level	minimization	aims	to	simplify	input/output	characteristics	of	a

combinational	circuit.	The	idea	here	is	obtaining	the	same	truth	table	with	less
number	of	logic	gates.	This	operation	can	be	done	using	Boolean	algebra
identities	and	properties	introduced	in	the	previous	section.	However,	this
requires	expertise.	There	are	also	very	effective	methods	for	gate-level
minimization.	In	this	book,	we	will	depend	on	Vivado’s	optimization	tool	for
gate-level	minimization	since	it	can	handle	most	cases	very	effectively.	This
does	not	mean	that	the	reader	should	not	know	basics	of	gate-level	minimization.
Let’s	see	how	gate-level	minimization	can	be	done	on	two	examples.	The	first

combinational	circuit	to	be	minimized	is	the	one	in	Fig.	7.7.	As	can	be	seen
there,	the	circuit	is	composed	of	six	logic	gates.	The	truth	table	of	this
combinational	circuit	is	as	in	Table	7.8.	This	truth	table	corresponds	to	the	AND
gate.	Hence,	the	combinational	circuit	can	be	represented	by	the	logic	function	z
=	x	·	y.	Therefore,	one	logic	gate	is	sufficient	to	implement	it	instead	of	using	six
gates.
As	second	example,	let’s	take	the	combinational	circuit	with	the	logic	function

z	=	x	·	y	+	x	·	y.	Boolean	algebra	identity	and	properties	given	in	Tables	7.6	and
7.7	can	be	used	to	simplify	this	logic	function	such	that	the	end	result	will	be	z	=
y.	In	other	words,	input	x	does	not	have	any	effect	on	the	output	of	the
combinational	circuit.	We	provide	Verilog	and	VHDL	descriptions	of	this
combinational	circuit	in	Listings	7.3	and	7.4.
Let’s	take	the	Verilog	description	in	Listing	7.3.	We	provide	initial	form	of

the	combinational	circuit	in	Vivado	(the	RTL	design)	in	Fig.	7.9a.	As	can	be
seen	in	this	figure,	the	combinational	circuit	is	constructed	exactly	as	represented
by	the	Verilog	description.	We	also	provide	the	synthesization	result	in	Fig.

7.9b.	As	can	be	seen	in	this	figure,	input	x	is	not	connected	to	any	logic	block.
Therefore,	Vivado’s	optimization	tool	worked	as	expected.

FIGURE	7.9	Gate-level	minimization	example	in	Vivado.

Listing	7.3	Verilog	Description	of	the	Combinational	Circuit	to	be	Minimized

Listing	7.4	VHDL	Description	of	the	Combinational	Circuit	to	be	Minimized

7.4	Combinational	Circuit	Implementation
We	can	implement	a	combinational	circuit	using	several	methods	as	explained

in	Sec.	2.3.	Since	the	main	focus	of	this	book	is	on	the	FPGA-based
implementation,	we	will	use	the	look-up	table	(LUT)	representation	for
combinational	circuits	here.	To	do	so,	we	will	start	with	the	truth	table–based
implementation	next.	Then,	we	will	consider	implementing	combinational
circuits	with	different	number	of	inputs.

7.4.1	Truth	Table-Based	Implementation
A	combinational	circuit	can	be	implemented	when	its	truth	table	is	available.

The	idea	here	is	focusing	on	input	combinations	producing	output	0	or	1
separately.	Each	input	combination	can	be	represented	by	a	standard	logic
function.	This	leads	to	the	overall	logic	function	of	the	combinational	circuit.
To	explain	the	truth	table–based	implementation	methodology,	let’s	first	focus

on	input	combinations	producing	output	1.	Assume	that	the	truth	table	of	a	two-
input	combinational	circuit	is	as	in	Table	7.9.	As	can	be	seen	in	this	table,	the
output	z	will	be	1	when	x	=	0	and	y	=	1	or	x	=	1	and	y	=	1.	This	helps	us	forming
the	logic	function	for	the	combinational	circuit	as	follows.	First,	z	should	be	1
when	x	=	0	and	y	=	1.	We	can	satisfy	this	constraint	by	the	logic	function	z	=	 	·
y.	Second,	z	should	be	1	when	x	=	1	and	y	=	1.	Using	the	same	reasoning,	we	can
form	the	logic	function	z	=	 	·	y.	Now,	z	will	be	1	when	either	the	first	or	second
constraint	is	satisfied.	Therefore,	we	can	form	the	final	logic	function	as	z	=	 	·	y
+	x	·	y.

TABLE	7.9	Truth	Table	of	the
Example	Two-Input	Combinational
Circuit

The	logic	function	z	=	 	·	y	+	x	·	y	can	be	described	by	only	mentioning	which
input	combinations	produce	output	1.	This	representation	is	called	sum	of
products	(SOP).	As	the	name	implies,	each	constraint	is	represented	by	an	AND
gate.	The	final	logic	function	is	formed	by	applying	OR	gate	to	all	constraints.
Hence,	the	name	sum	of	products.	For	our	example,	the	SOP	form	will	be	as	z	=
∑(1,	3).	Here,	the	sum	sign	represents	the	SOP	form.	The	numbers	within	the
parentheses	stand	for	which	input	combinations	produce	the	output	1.
The	truth	table–based	implementation	can	also	be	done	by	focusing	on	input

combinations	producing	the	output	0	as	the	second	case.	Here,	we	can	modify
the	truth	table	by	taking	the	inverse	of	the	output.	Then,	it	becomes	as	in	Table
7.10.	We	can	form	the	logic	function	for	 	using	the	SOP	representation	as	 	=
∑(0,	2).	Or,	as	a	logic	function	it	becomes	 	=	 	·	 	+	x	·	 .	Using	Boolean
algebra	properties	in	Table	7.7,	we	can	obtain	 	This	logic
function	can	be	represented	in	the	simplified	form	as	z	=	(x	+	y)	·	(+	y).	This
representation	is	called	product	of	sums	(POS).	Different	from	SOP,	here	each
constraint	is	represented	by	an	OR	gate.	The	final	logic	function	is	formed	by
applying	AND	gate	to	all	constraints.	Hence,	the	name	product	of	sums.	The
above	example	can	be	represented	in	POS	form	as	z	=	∏(0,	2).	Here,	the	product
sign	represents	the	POS	form.	Numbers	within	the	parentheses	stand	for	which
input	combinations	produce	the	output	0.

TABLE	7.10	Modified	Truth	Table	of
the	Example	Two-Input	Combinational
Circuit

TABLE	7.11	Generic	Truth	Table	of	a
One-Input	Combinational	Circuit

The	reader	is	free	to	choose	the	SOP	or	POS	form	in	implementation.
However,	it	is	advisable	to	choose	the	one	which	requires	the	less	number	of
logic	operations	(gates)	in	implementation.	Next,	we	will	focus	on	the
multiplexer-based	implementation	methodology	for	SOP	and	POS	forms.

7.4.2	Implementing	One-Input	Combinational	Circuits
Combinational	circuits	are	implemented	by	LUTs	in	an	FPGA.	As	explained

in	Sec.	2.2.3,	a	generic	LUT	is	composed	of	a	multiplexer	and	memory	elements
in	its	basic	form.	Therefore,	we	will	explore	how	a	logic	function	(corresponding
to	a	combinational	circuit)	can	be	implemented	by	memory	elements	and
multiplexers	in	this	and	the	following	sections.
The	first	group	of	combinational	circuits	to	be	explored	has	one	input.	We	can

represent	a	generic	logic	function	for	such	a	combinational	circuit	as	y	=	F(x).
Here,	x	and	y	are	the	input	and	output	variables,	respectively.	To	implement	this
logic	function	by	a	multiplexer,	we	should	first	form	its	truth	table.	The	generic
truth	table	will	be	as	in	Table	7.11.

Based	on	the	truth	table	in	Table	7.11,	we	can	construct	an	implementation
using	a	two-to-one	multiplexer	and	memory	elements	as	in	Fig.	7.10.	Here,	the
select	pin	of	the	multiplexer	is	set	as	the	input	variable	x.	The	multiplexer	input
pins	are	connected	to	memory	elements	which	are	set	according	to	output	values
of	the	logic	function	to	be	implemented	as	indicated	in	its	truth	table.	The
multiplexer	output	corresponds	to	the	output	of	the	logic	function	y.

FIGURE	7.10	Generic	implementation	of	a	one-input	combinational	circuit.

TABLE	7.12	Generic	Truth	Table	of	a
Two-Input	Combinational	Circuit

We	can	take	the	NOT	gate	as	an	example	of	one-input	combinational	circuit.
Based	on	its	truth	table	in	Table	7.2,	implementation	of	this	gate	will	be	as	in
Fig.	7.11.	As	can	be	seen	in	this	figure,	characteristics	of	the	setup	can	be
changed	just	by	changing	input	values	of	the	multiplexer	(set	as	memory
elements).

FIGURE	7.11	NOT	gate	implemented	by	a	two-to-one	multiplexer.

7.4.3	Implementing	Two-Input	Combinational	Circuits
The	second	group	of	combinational	circuits	to	be	explored	has	two	inputs.	We

can	form	a	generic	logic	function	to	represent	such	a	combinational	circuit	as	z	=
F(x,	y).	Here,	x	and	y	are	input	variables	and	z	is	the	output	of	the	logic	function.
The	truth	table	of	this	function	will	be	as	in	Table	7.12.
We	can	implement	the	logic	function	z	=	F(x,	y)	in	two	different	ways.	First,

the	truth	table	in	Table	7.12	leads	to	the	structure	in	Fig.	7.12	as	in	the	previous
section.	Here,	a	four-to-one	multiplexer	and	memory	elements	are	used.	The
select	pins	of	the	multiplexer	are	set	as	input	variables	x	and	y.	The	multiplexer
input	pins	are	connected	to	memory	elements	which	are	set	according	to	output
values	of	the	logic	function	to	be	implemented	as	indicated	in	its	truth	table.	The
multiplexer	output	corresponds	to	the	output	of	the	logic	function	z.
Let’s	consider	the	two-input	OR,	AND,	and	XOR	gates	as	examples.	These

can	be	implemented	using	the	structure	in	Fig.	7.12	by	their	truth	table	as	in	Fig.
7.13.

FIGURE	7.12	Generic	implementation	of	a	two-input	combinational	circuit.

FIGURE	7.13	OR,	AND,	and	XOR	gates	implemented	by	a	four-to-one	multiplexer.

TABLE	7.13	Generic	Truth	Table	of	a
Two-Input	Combinational	Circuit	in
Decomposed	Form

The	second	implementation	method	for	the	logic	function	z	=	F(x,	y)	is	by
using	three	separate	two-to-one	multiplexers.	To	explain	this	structure,	let’s
closely	look	at	Table	7.12.	As	can	be	seen	in	this	table,	the	variable	x	will	have
the	value	0	for	the	first	two	input	combinations.	It	will	have	the	value	1	for	the
last	two	input	combinations.	This	allows	us	to	decompose	the	truth	table	into	two
parts	as	in	Table	7.13.
Let’s	consider	a	hierarchical	implementation	strategy	based	on	Table	7.13.	To

do	so,	we	should	initially	handle	the	first	and	second	parts.	Since	the	binary
variable	x	is	fixed	for	each	subpart,	we	will	consider	only	the	binary	variable	y.
Therefore,	the	first	and	second	parts	can	be	implemented	by	two	two-to-one
multiplexers.	Input	values	of	the	first	multiplexer	will	be	F(0,	0)	and	F(0,	1).
Input	values	of	the	second	multiplexer	will	be	F(1,	0)	and	F(1,	1).	The	select	pin
of	these	multiplexers	will	be	set	as	the	binary	variable	y.	The	output	of	these
multiplexers	is	fed	to	another	two-to-one	multiplexer	as	input.	The	select	pin	of
this	multiplexer	will	be	connected	to	the	binary	variable	x.	The	output	of	this
multiplexer	corresponds	to	the	output	of	the	logic	function	F(x,	y).	Therefore,
this	multiplexer	will	decide	which	part	in	Table	7.13	will	be	connected	to	the
output.	Generic	structure	of	this	hierarchical	implementation	will	be	as	in	Fig.
7.14.	Logic	gates	in	Fig.	7.13	can	also	be	implemented	this	way.
As	can	be	seen	in	Fig.	7.14,	the	hierarchical	implementation	is	more	complex

compared	to	the	one	in	Fig.	7.12.	However,	it	has	one	main	advantage.	This
structure	allows	implementing	two	different	one-input	combinational	circuits
with	the	same	input.	Let’s	assume	that	we	have	two	such	logic	functions	as	y1	=
F1(x)	and	y2	=	F2(x).	We	can	implement	these	using	the	hierarchical	structure	as
in	Fig.	7.15.	Here,	the	binary	variable	s	decides	on	which	logic	function	is
active.

FIGURE	7.14	Generic	implementation	of	a	two-input	combinational	circuit	using	hierarchical	structure.

FIGURE	7.15	Generic	implementation	of	two	one-input	combinational	circuits	using	hierarchical
structure.

TABLE	7.14	Generic	Truth	Table	of	a
Three-Input	Combinational	Circuit

7.4.4	Implementing	Three-Input	Combinational	Circuits
The	third	and	final	group	of	combinational	circuits	to	be	explored	has	three

inputs.	We	can	form	a	generic	logic	function	to	represent	such	a	combinational
circuit	as	w	=	F(x,	y,	z).	Here,	x,	y,	and	z	are	the	input	variables	and	w	is	the
output	of	the	logic	function.	The	truth	table	of	this	function	will	be	as	in	Table
7.14.

FIGURE	7.16	Generic	implementation	of	a	three-input	combinational	circuit.

TABLE	7.15	Generic	Truth	Table	of	a
Three-Input	Combinational	Circuit
Decomposed	into	Two	Parts

We	can	implement	the	logic	function	w	=	F(x,	y,	z)	in	three	different	ways.
The	first	implementation	method	is	based	on	a	single	eight-to-one	multiplexer	as
in	Fig.	7.16.	This	is	the	straightforward	method	as	introduced	in	the	previous
sections.
The	second	and	third	implementation	methods	for	the	logic	function	w	=	F(x,

y,	z)	are	based	on	the	hierarchical	structure	introduced	in	the	previous	section.
Let’s	start	with	the	second	implementation	method	by	decomposing	the	truth
table	of	the	logic	function	w	=	F(x,	y,	z)	into	two	parts	as	in	Table	7.15.	We	can
implement	the	first	and	second	parts	separately	using	four-to-one	multiplexers.
The	final	form	of	this	implementation	will	be	as	in	Fig.	7.17.	Similar	to	the
previous	section,	this	structure	can	also	be	used	to	implement	two	different	two-
input	combinational	circuits	as	z1	=	F1(x,	y)	and	z2	=	F2(x,	y).	We	can
implement	these	using	the	hierarchical	structure	as	in	Fig.	7.18.	Here,	the	binary
variable	s	decides	on	which	logic	function	is	active.
The	third	implementation	method	for	the	logic	function	w	=	F(x,	y,	z)	is	based

on	the	hierarchical	structure	using	two-to-one	multiplexers.	To	do	so,	we	should
decompose	the	truth	table	of	the	logic	function	w	=	F(x,	y,	z)	into	four	parts	as	in
Table	7.16.	This	leads	to	the	implementation	as	in	Fig.	7.19.	This	structure	can
also	be	used	to	implement	three	one-input	combinational	circuits.

FIGURE	7.17	Generic	implementation	of	a	three-input	combinational	circuit	using	four-to-one
multiplexers.

FIGURE	7.18	Generic	implementation	of	two	two-input	combinational	circuits	using	hierarchical
structure.

TABLE	7.16	Generic	Truth	Table	of	a
Three-Input	Combinational	Circuit
Decomposed	into	Four	Parts

FIGURE	7.19	Generic	implementation	of	a	three-input	combinational	circuit	using	two-to-one
multiplexers.

The	hierarchical	implementation	strategy	can	be	generalized	to	combinational
circuits	with	more	than	three	inputs.	In	fact,	a	similar	idea	has	been	applied	to
the	LUT	formation	in	FPGAs	as	mentioned	in	Sec.	2.2.3.	There,	it	is	mentioned
that	in	the	Artix-7
FPGA,	each	CLB	slice	has	four	six-input	LUTs.	This	allows	two	seven-input

LUT	or	one	eight-input	LUT	formation.

7.5	Combinational	Circuit	Design
Designing	a	combinational	circuit	requires	expertise.	Moreover,	this	is	a	topic

of	its	own.	On	the	other	hand,	there	are	some	standard	steps	to	be	followed	for
any	design.	In	this	section,	we	will	introduce	these	steps	such	that	they	can	be
applied	throughout	the	book.

7.5.1	Analyzing	the	Problem	to	Be	Solved
The	first	and	most	important	step	in	designing	a	combinational	circuit	is

understanding	the	problem	to	be	solved.	In	other	words,	the	problem	to	be
solved	should	be	well-defined.	This	leads	to	forming	the	solution.	At	this	step,

solved	should	be	well-defined.	This	leads	to	forming	the	solution.	At	this	step,
design	constraints	should	also	be	taken	into	account.	Related	to	this,	the	input
data	to	be	processed	and	the	output	to	be	fed	by	the	circuit	should	be	set.	This
will	allow	defining	input	and	output	binary	variables	to	be	processed.	Here,	the
reader	should	remember	that	a	combinational	circuit	gets	input	as	logic	levels	0
or	1	(or	voltage	values	corresponding	to	these).	Therefore,	if	an	input	is	to	be
received	from	a	sensor,	it	should	be	adjusted	accordingly.	The	output	of	the
combinational	circuit	will	also	be	in	the	form	of	logic	levels	0	or	1.	Therefore,	if
an	actuator	is	to	be	driven	by	output	of	the	combinational	circuit,	a	suitable
interface	should	be	established	between	the	combinational	circuit	and	actuator.

7.5.2	Selecting	a	Solution	Method
After	analyzing	the	problem,	the	next	step	is	forming	a	method	or	algorithm	to

solve	it.	Since	we	are	dealing	with	combinational	circuits,	the	solution	will	be	in
terms	of	a	logic	function	between	the	inputs	and	output	of	the	circuit.	The
formed	logic	function	should	satisfy	all	design	constraints	specified	in	the
previous	step.

7.5.3	Implementing	the	Solution
The	final	step	in	the	design	process	is	the	implementation.	Since	the	main

focus	of	this	book	is	on	the	FPGA,	we	will	implement	the	design	on	it.
Therefore,	the	corresponding	HDL	for	the	designed	combinational	circuit	should
be	formed	first.	Afterward,	we	can	benefit	from	the	Vivado’s	optimization	tool
for	gate-level	minimization.	It	is	also	advisable	to	simulate	the	designed	system
before	implementation.	If	it	satisfies	all	design	constraints,	then	the
corresponding	bitstream	can	be	generated	and	embedded	on	the	FPGA	chip.
Hence,	the	design	is	concluded.

7.6	Sample	Designs
We	can	apply	the	previous	design	steps	on	designing	combinational	circuits	to

solve	real-life	problems.	Here,	we	pick	three	such	cases	as	home	alarm,	digital
safe,	and	car	park	occupied	slot	counting	system.	We	will	discuss	each	design
next.

7.6.1	Home	Alarm	System
We	can	design	a	basic	home	alarm	system	using	tools	introduced	in	this	and

previous	chapters.	To	do	so,	let’s	first	define	the	problem.	Assume	that	the	alarm
system	to	be	designed	is	to	be	applied	on	three	windows	and	a	door.	Each

system	to	be	designed	is	to	be	applied	on	three	windows	and	a	door.	Each
window	and	the	door	has	a	sensor	such	that	when	it	is	opened,	it	will	give	logic
level	1.	There	should	be	an	on/off	switch	for	the	alarm.	If	we	want	to	activate	the
alarm,	the	switch	will	give	logic	level	1.	Otherwise,	it	will	give	logic	level	0.	At
this	point,	the	problem	is	defined	and	design	constraints	are	set.
To	implement	the	combinational	circuit	for	the	design,	let’s	assign	binary

variables	s0,	s1,	s2,	and	s3	to	each	sensor	output.	Let	the	on/off	switch	be
represented	by	the	binary	variable	m.	Let’s	define	the	binary	variable	a	as	an
output.	This	variable	will	have	logic	value	1	when	an	intruder	triggers	the	alarm.
Otherwise,	the	output	of	the	system	will	be	logic	level	0.	Based	on	all	these
constraints,	the	logic	function	between	the	input	and	output	will	be	a	=	(s0	+	s1
+	s2	+	s3)	·	m.	The	corresponding	circuit	diagram	will	be	as	in	Fig.	7.20.
We	can	form	Verilog	description	of	the	circuit	in	Fig.	7.20	as	in	Listing	7.5.

The	VHDL	description	of	the	same	circuit	will	be	as	in	Listing	7.6.	Vivado
synthesizes	the	Verilog	or	VHDL	description	as	in	Fig.	7.21.	As	can	be	seen	in
this	figure,	one	five-input	LUT	is	sufficient	for	implementation.

FIGURE	7.20	Circuit	diagram	of	the	home	alarm	system.

Listing	7.5	Verilog	Description	of	the	Home	Alarm	System

Listing	7.6	VHDL	Description	of	the	Home	Alarm	System

FIGURE	7.21	Synthesization	result	of	the	home	alarm	system.

7.6.2	Digital	Safe	System
We	can	design	a	simple	digital	safe	using	combinational	circuits.	Assume	that

the	system	has	a	four-bit	predefined	password.	We	will	use	four	switches	as	the
input	to	the	system.	If	the	input	matches	the	predefined	password,	then	the	first
output	will	have	logic	level	1.	Otherwise,	the	second	output	will	have	logic	level
1.
We	can	implement	the	corresponding	combinational	circuit	using	an	XOR

gate	followed	by	a	NOT	gate	for	each	bit	to	be	tested.	Therefore,	if	input	bit

gate	followed	by	a	NOT	gate	for	each	bit	to	be	tested.	Therefore,	if	input	bit
matches	the	corresponding	password	bit,	then	the	XOR	gate	followed	by	NOT
will	give	logic	level	1.	If	all	input	bits	match	corresponding	predefined	password
bits	this	way,	the	first	output	will	have	logic	level	1	and	the	second	output	will
have	logic	level	0.	The	second	output	will	simply	be	inverse	of	the	first	output.
To	implement	the	combinational	circuit	for	the	design,	let’s	assign	binary

variables	s0,	s1,	s2,	and	s3	as	input.	Predefined	password	can	be	represented	as
p[0]	·	·	·	p[3].	Let’s	define	the	first	and	second	outputs	as	binary	variables	l1	and
l2,	respectively.	The	logic	function	between	the	inputs	and	first	output	variable
will	be	 	 	The	second	output	will	be
l1	=	 .	The	corresponding	circuit	diagram	will	be	as	in	Fig.	7.22.
We	can	form	Verilog	description	of	the	circuit	in	Fig.	7.22	as	in	Listing	7.7.

The	VHDL	description	of	the	same	circuit	will	be	as	in	Listing	7.8.	Vivado
synthesizes	the	Verilog	description	as	in	Fig.	7.23.	As	can	be	seen	in	this	figure,
two	four-input	LUTs	are	sufficient	for	implementation.

FIGURE	7.22	Circuit	diagram	of	the	digital	safe	system.

Listing	7.7	Verilog	Description	of	the	Digital	Safe	System

Listing	7.8	VHDL	Description	of	the	Digital	Safe	System

FIGURE	7.23	Synthesization	result	of	the	digital	safe	system.

7.6.3	Car	Park	Occupied	Slot	Counting	System
Our	last	real-life	problem	is	as	follows.	There	is	a	car	park	with	three	slots	and

we	would	like	to	know	how	many	of	its	slots	are	occupied	at	a	given	time.
Within	the	design,	occupied	slot	locations	are	not	important.	We	can	design	a
combinational	circuit	for	this	purpose.	Assume	that	we	placed	a	sensor	over	each
slot	which	gives	output	logic	level	1	when	the	slot	is	occupied.	If	the	slot	is
empty,	sensor	gives	output	logic	level	0.	Let’s	label	output	of	sensors	as	binary
variables	s0,	s1,	and	s2.	The	designed	combinational	circuit	will	provide	the
output	as	a	two-bit	binary	number	c1	(MSB)	and	c0	(LSB).	Therefore,	we	should
cover	all	input	combinations	in	terms	of	a	truth	table	as	in	Table	7.17.
Using	Table	7.17,	we	can	form	logic	functions	for	c0	and	c1	in	the	SOP	form

as	follows:

TABLE	7.17	Truth	Table	of	the	Car
Park	Occupied	Slot	Counting	System

Listing	7.9	Verilog	Description	of	the	Car	Park	Occupied	Slot	Counting
System

Listing	7.10	VHDL	Description	of	the	Car	Park	Occupied	Slot	Counting
System

FIGURE	7.24	Synthesization	result	of	the	car	park	occupied	slot	counting	system.

Listing	7.11	Home	Alarm	System	Implemented	on	the	Basys3	Board	in
Verilog

We	can	implement	these	logic	functions	in	Verilog	and	VHDL	as	in	Listings
7.9	and	7.10.	Vivado	synthesizes	the	Verilog	description	as	in	Fig.	7.24.	As	can
be	seen	in	this	figure,	two	LUTs	each	with	three	inputs	are	sufficient	for
implementation.

7.7	Applications	on	Combinational	Circuits
In	this	section,	we	will	implement	sample	designs	in	Sec.	7.6	on	the	Basys3

board.	Therefore,	we	will	cover	home	alarm,	digital	safe,	and	car	park	occupied
slot	counting	systems.	For	all	three	applications,	we	will	get	input	bit	values
from	switches	on	the	board.	Out-put	bit	values	are	represented	by	LEDs	on	the
board.	The	reader	can	consult	Sec.	4.8	related	to	this	setup.

7.7.1	Implementing	the	Home	Alarm	System
We	can	implement	the	home	alarm	system	on	the	Basys3	board.	Therefore,

we	provide	the	Verilog	description	in	which	LEDs	and	switches	on	the	board	are
connected	as	the	input	and	output	in	Listing	7.11.	Here,	we	use	the	Verilog
description	of	the	system	in	Listing	7.5	as	an	IP	block.	Therefore,	we	expect	the
reader	has	generated	the	corresponding	IP	block.

7.7.2	Implementing	the	Digital	Safe	System
As	in	previous	application,	we	can	implement	the	digital	safe	system	on	the

Basys3	board.	In	Listing	7.12,	we	provide	the	Verilog	description	in	which
LEDs	and	switches	on	the	board	are	connected	as	the	input	and	output.	Here,	we
use	the	Verilog	description	of	the	system	in	Listing	7.7	as	an	IP	block.
Therefore,	we	expect	the	reader	has	generated	the	corresponding	IP	block.

Listing	7.12	Digital	Safe	System	Implemented	on	the	Basys3	Board	in
Verilog

Listing	7.13	Car	Park	Occupied	Slot	Counting	System	Implemented	on	the
Basys3	Board	in	Verilog

7.7.3	Implementing	the	Car	Park	Occupied	Slot	Counting
System
We	can	also	implement	the	car	park	occupied	slot	counting	system	on	Basys3

board.	As	in	previous	applications,	we	provide	Verilog	description	in	which
LEDs	and	switches	on	the	board	are	connected	in	Listing	7.13.	Here,	we	use
Verilog	description	of	the	system	in	Listing	7.9	as	an	IP	block.	Therefore,	we
expect	the	reader	has	generated	the	corresponding	IP	block.

7.8	FPGA	Building	Blocks	Used	in	Combinational
Circuits
LUTs	are	extensively	used	in	the	combinational	circuit	implementation	as

explained	in	detail	in	Sec.	7.4.	Hence,	CLBs	will	be	the	main	blocks	to	be	used
in	this	chapter.	Besides,	interconnect	resources	and	input/output	blocks	are
needed	while	implementing	a	combinational	circuit.

7.9	Summary
Combinational	circuits	and	their	properties	were	the	main	focus	of	this

chapter.	Therefore,	we	started	with	analyzing	basic	logic	gates	NOT,	OR,	AND,
and	XOR.	Then,	we	introduced	tools	to	analyze	combinational	circuits	formed
by	these	basic	logic	gates.	At	this	step,	we	benefited	from	Vivado	extensively.
Hence,	we	did	not	cover	mathematical	derivations	and	methods.	Instead,	we
directed	the	reader	to	related	references.	We	then	explored	how	combinational
circuits	can	be	designed.	Related	to	this,	we	provided	sample	designs	to	show
how	real-life	problems	can	be	solved	using	combinational	circuits.	We	also
provided	sample	designs	on	real-life	problems	in	exercises.	We	believe	that
solving	these	will	let	the	reader	grasp	digital	design	principles	at	least	from	the
combinational	circuit	perspective.

7.10	Exercises
7.1			Form	the	truth	table	of	a	three-input

a.	AND	gate.
b.	OR	gate.

7.2			Construct	three-and	four-input	AND	gates	using	two-input	AND	gates.
7.3			Construct	three-and	four-input	OR	gates	using	two-input	OR	gates.
7.4			A	combinational	circuit	is	represented	by	logic	function	F(x,	y,	z)	=	x	·
y	+	y	·	z	+	z	·	x.	Implement	this	circuit	using

a.	an	eight-to-one	multiplexer.
b.	four-to-one	and	two-to-one	multiplexers.
c.	two-to-one	multiplexers.

7.5			Describe	the	combinational	circuit	in	Exercise	7.4	in	Verilog	or
VHDL.
7.6			A	combinational	circuit	is	represented	by	logic	function	F(x,	y,	z)	=	x	·
z	+	x	·	y.	Implement	this	circuit	using

a.	an	eight-to-one	multiplexer.
b.	four-to-one	and	two-to-one	multiplexers.
c.	two-to-one	multiplexers.

7.7			Describe	the	combinational	circuit	in	Exercise	7.6	in	Verilog	or
VHDL.
7.8			A	combinational	circuit	is	represented	in	the	SOP	form	F(x,	y,	z)	=
∑(0,	2,	4,	6).

a.	Describe	this	circuit	in	Verilog	or	VHDL	using	dataflow
modeling.
b.	Obtain	the	simplest	form	of	this	circuit.

7.9			Construct	the	truth	table	of	a	three-input	XOR	gate.	Describe	the	POS
form	of	this	gate	in	Verilog	or	VHDL	using	the	dataflow	modeling.

7.10			(Two’s	complement	calculator.)	Design	a	combinational	circuit	with	the
following	specifications.	Input	to	the	circuit	is	a	three-bit	unsigned
number.	Output	of	the	circuit	is	two’s	complement	of	input.	Implement	the
designed	combinational	circuit	either	in	Verilog	or	VHDL.

7.11			(Two’s	complement	calculator	with	sign	bit.)	Design	a	combinational
circuit	with	the	following	specifications.	Input	to	the	circuit	is	a	four-bit
signed	number.	Output	of	the	circuit	is	the	three	value	bits.	If	the	number	is
negative,	then	it	is	represented	in	two’s	complement	form	at	output.
Implement	the	designed	combinational	circuit	either	in	Verilog	or	VHDL.

7.12			(Arithmetic	operations.)	Arithmetic	operations	introduced	in	Chap.	6	can
be	implemented	by	combinational	circuits.	Let’s	take	two	two-bit	numbers
x[1]x[0]	and	y[1]y[0].

a.	Design	combinational	circuits	for	arithmetic	operations	on
these	numbers	as	addition,	subtraction,	multiplication,	and
division.
b.	Implement	the	designed	combinational	circuits	either	in
Verilog	or	VHDL.
c.	Compare	the	implemented	design	with	the	ones	provided	in
Chap.	6	in	terms	of	the	FPGA	resource	usage.

7.13			(Fire	alarm	system.)	Design	a	fire	alarm	system	with	the	following
specifications.	The	system	has	an	on/off	switch.	The	system	works	only	if
the	switch	is	on.	There	is	a	smoke	detector	giving	the	output	in	three	bits.
When	the	smoke	density	is	maximum,	the	output	of	the	sensor	is	seven	in
the	binary	form.	When	there	is	no	smoke	detected,	the	output	of	the	sensor
is	zero	in	the	binary	form.	The	alarm	will	be	active	if	the	output	of	the
smoke	detector	exceeds	four	in	the	binary	form.	Implement	the	designed
combinational	circuit	either	in	Verilog	or	VHDL.

7.14			(Sevensegment	display	decoder.)	In	digital	systems,	sevensegment
displays	are	used	extensively.	The	display	has	seven	independent	segments
(A,	B,	C,	D,	E,	F,	G)	as	in	Fig.	7.25.

FIGURE	7.25	Sevensegment	display.

Design	a	decoder	circuitry	with	a	four-bit	input	representing	a
decimal	number.	The	decoder	converts	this	number	to
corresponding	sevensegment	pin	pattern	as	in	Table	7.18.
Implement	the	designed	combinational	circuit	either	in	Verilog	or
VHDL.

TABLE	7.18	SevenSegment	Display
Patterns

7.15			(Keypad	decoder.)	A	simple	keypad	can	be	represented	as	in	Fig.	7.26.
As	can	be	seen	in	this	figure,	the	keypad	has	seven	output	lines,	three	for
row	and	four	for	column	locations,	respectively.	When	a	key	is	pressed,
corresponding	row	and	column	lines	will	produce	logic	level	1.	Design	a
combinational	circuit	working	as	a	keypad	decoder.	The	input	of	the	circuit
will	be	the	output	lines	of	the	keypad.	The	output	of	the	circuit	will	be	the

corresponding	binary	number	in	three	bits.	If	*	or	#	key	is	pressed,	the
output	of	the	circuit	will	be	zero.	Implement	the	designed	combinational
circuit	either	in	Verilog	or	VHDL.

FIGURE	7.26	Simple	keypad.

7.16				Merge	the	designs	in	Exercises	7.14	and	7.15	such	that	when	a	number	is
pressed	on	the	keypad,	it	is	shown	in	the	sevensegment	display.	Implement
the	designed	combinational	circuit	either	in	Verilog	or	VHDL.

7.17			(Remote	controller—key	pattern	generator.)	Design	a	simple	remote
controller	key	pattern	generator	system	with	the	following	specifications.
Only	the	key	pattern	part	is	handled	in	the	design.	There	are	three	buttons
on	the	controller.	When	the	first	one	is	pressed,	the	combinational	circuit
should	produce	pattern	001.	For	the	second	and	third	buttons,	this	pattern
will	become	010	and	100,	respectively.	When	more	than	one	button	is
pressed,	the	output	of	the	combinational	circuit	will	be	the	pattern	000.
This	pattern	will	also	be	used	when	no	button	is	pressed.	Implement	the
designed	combinational	circuit	either	in	Verilog	or	VHDL.

7.18			(Even/odd	number	detector.)	Design	an	even/odd	number	detector	with
the	following	specifications.	Input	to	the	system	is	a	four-bit	number.	If	the
number	is	even,	the	first	output	will	be	logic	level	1.	Otherwise,	the	second
output	will	be	logic	level	1.	Implement	the	designed	combinational	circuit
either	in	Verilog	or	VHDL.

7.19			(Simple	safety	belt	alarm	system	for	cars.)	Design	a	simple	safety	belt
alarm	system	for	cars.	Only	the	front	seat	safety	belts	are	of	focus.	The
alarm	system	works	as	follows.	If	the	car	engine	has	started,	the	passenger
has	seated,	and	the	passenger	has	not	plugged	in	the	belt,	then	alarm	signal
starts	till	the	belt	has	been	plugged	in.	The	engine	status	(started	or	not)	is
provided	by	a	digital	signal.	If	the	engine	has	started	and	operating,	logic
level	1	is	fed.	Otherwise,	logic	level	0	is	fed.	Pressure	sensor	attached	to
the	driver	and	passenger	seats	provide	a	digital	signal	with	logic	level	1
when	a	mass	produces	pressure.	Otherwise,	the	sensor	provides	logic	level
0.	The	safety	belt	plug-in	apparatus	has	a	digital	sensor	such	that	when	the

belt	is	plugged	in,	it	produces	logic	level	1.	Otherwise,	it	produces	logic
level	0.	Although	an	audio	alarm	signal	is	desirable,	in	this	question	we
will	use	two	LEDs	to	indicate	the	alarm.	If	the	driver	has	seated,	started	the
engine,	and	not	plugged	the	belt,	the	alarm	will	turn	on	till	the	belt	is
plugged	in.	The	same	settings	in	the	driver	seat	apply	to	the	passenger	seat.
Please	note	that	the	two	seat	alarms	operate	independently.	Implement	the
designed	combinational	circuit	either	in	Verilog	or	VHDL.

7.20			(Joystick	application.)	Use	the	joystick	setup	in	Exercise	6.14	to	form	a
new	Verilog	or	VHDL	description.	Here,	when	the	joystick	goes	to	its	four
limits	(two	for	x-axis	and	two	for	y-axis)	four	separate	LEDs	on	the
Basys3	board	(led[0],	led[3],	led[6],	and	led[9])	will	turn	on	separately.
Otherwise,	all	LEDs	will	turn	off.

CHAPTER	8

Combinational	Circuit	Blocks

We	have	introduced	combinational	circuits	in	the	previous	chapter.	There,
the	focus	was	on	general	characteristics	of	these	circuits.	There	are	also	well-
known	combinational	circuit	blocks	used	in	digital	systems.	These	can	be
counted	as	adders,	comparators,	decoders,	encoders,	multiplexers,	parity
generators,	and	checkers.	This	chapter	discusses	these	combinational	circuit
blocks.

8.1	Adders
Although	addition	is	performed	using	a	different	method	in	an	FPGA,	the

basic	adder	circuit	is	still	worth	analyzing.	Therefore,	we	will	consider	it	in	this
section.	There	are	two	basic	adder	types:	half	and	full.

8.1.1	Half	Adder
The	half	adder	(for	one-bit	addition)	has	two	inputs	and	two	outputs.	It	adds

input	bits	and	gives	sum	and	carry-out	bits	as	the	output.	The	truth	table	of	the
one-bit	half	adder	is	presented	in	Table	8.1.	In	this	table,	binary	variables	x	and	y
stand	for	input	bits	to	be	added.	Binary	variables	s	and	co	represent	sum	and
carry-out	values,	respectively.

TABLE	8.1	Truth	Table	of	the	Half

Adder	(for	One-Bit	Addition)

As	can	be	seen	in	Table	8.1,	the	carry-out	bit	has	logic	level	1	when	both	input
bits	are	at	logic	level	1.	This	corresponds	to	the	AND	operation.	The	sum	bit	(s)
has	logic	level	1	when	input	bits	have	different	logic	levels.	This	corresponds	to
the	XOR	operation.	Based	on	these	observations,	the	half	adder	can	be
constructed	as	in	Fig.	8.1.

FIGURE	8.1	Circuit	diagram	of	half	adder.

8.1.2	Full	Adder
The	half	adder	does	not	take	the	input	carry-in	bit	into	account	in	operation.

This	causes	problems	when	adding	binary	numbers	with	more	than	one	digit.
The	full	adder	is	introduced	to	overcome	this	problem.	Besides	having	two	input
pins,	the	full	adder	also	has	a	carry-in	pin.	The	truth	table	of	this	device	is
presented	in	Table	8.2.	In	this	table,	binary	variables	x	and	y	stand	for	input	bits
to	be	added.	Binary	variable	ci	stands	for	the	carry-in	bit.	Binary	variables	s	and
co	represent	sum	and	carry-out	bits,	respectively.	As	in	half	adder,	circuit
diagram	of	full	adder	can	be	constructed	by	analyzing	Table	8.2.	The	final
constructed	circuit	diagram	of	the	full	adder	is	shown	in	Fig.	8.2.

TABLE	8.2	Truth	Table	of	Full	Adder
(for	One-Bit

FIGURE	8.2	Circuit	diagram	of	full	adder.

8.1.3	Adders	in	Verilog
As	mentioned	in	Chap.	6,	addition	is	handled	differently	in	an	FPGA:	either

the	DSP	block	is	used	for	this	operation	or	a	LUT	structure	is	formed.	We	have
introduced	the	addition	operation	in	Verilog	in	Sec.	6.7.	Here,	we	will	only
provide	half	and	full	adders	in	the	gate	level.	Let’s	start	with	the	one-bit	half
adder.	We	provide	the	Verilog	description	for	this	circuit	in	Listing	8.1.	Here,	x
and	y	represent	input	bits	to	be	added.	s	and	co	stand	for	sum	and	carry-out	bits,
respectively.
We	next	provide	the	Verilog	description	of	the	one-bit	full	adder	in	Listing

8.2.	The	only	difference	here	is	that	the	device	has	an	extra	carry-in	bit
represented	as	ci.

8.1.4	Adders	in	VHDL
We	have	introduced	the	addition	operation	in	VHDL	in	Sec.	6.9.	Here,	we

will	only	provide	half	and	full	adders	in	the	gate	level.	Let’s	start	with	the	one-
bit	half	adder.

Listing	8.1	Verilog	Description	of	One-Bit	Half	Adder

Listing	8.2	Verilog	Description	of	One-Bit	Full	Adder

Listing	8.3	VHDL	Description	of	One-Bit	Half	Adder

Listing	8.4	VHDL	Description	of	One-Bit	Full	Adder

We	provide	the	VHDL	description	for	this	circuit	in	Listing	8.3.	Binary
variables	used	in	this	description	are	the	same	as	in	the	previous	section.
We	next	provide	the	VHDL	description	of	the	one-bit	full	adder	in	Listing	8.4.

As	in	the	Verilog	description,	the	only	difference	here	is	that	the	circuit	has	an
extra	carry-in	bit	represented	as	ci.

8.2	Comparators
We	may	need	to	compare	the	magnitude	of	two	binary	numbers	to	obtain	their

status.	Here,	the	first	number	may	be	greater	than	the	second.	The	two	numbers
may	be	equal.	Or,	the	first	number	may	be	less	than	the	second.	To	achieve	this
goal,	we	will	need	a	comparator.	We	can	explain	the	comparison	operation	on
two	binary	variables	x	and	y	(each	being	one	bit)	using	the	truth	table	presented
in	Table	8.3.	Here,	g,	e,	and	l	stand	for	greater,	equal,	and	less,	respectively.

TABLE	8.3	Truth	Table	of	the	One-Bit

Comparator

Based	on	Table	8.3,	we	can	obtain	logic	functions	between	inputs	and	outputs
of	the	one-bit	comparator	as	follows:

Obtained	logic	functions	lead	to	the	circuit	diagram	of	the	one-bit	comparator
as	in	Fig.	8.3.

8.2.1	Comparators	in	Verilog
We	provide	the	Verilog	description	of	the	one-bit	comparator	in	terms	of

structural	and	dataflow	modeling	forms	in	Listing	8.5.	Here,	we	implemented	the
circuit	in	Fig.	8.3.	Therefore,	input	bits	to	be	compared	are	represented	by	binary
variables	x	and	y.	Output	values	are	represented	by	binary	variables	g,	e,	and	l.

FIGURE	8.3	Circuit	diagram	of	one-bit	comparator.

The	Verilog	description	of	an	N-bit	comparator	to	compare	two	N-bit	numbers
using	dataflow	and	structural	modeling	will	be	complex.	Therefore,	behavioral
modeling	will	be	more	appropriate	for	this	case.	To	do	so,	we	need	to	introduce
relational	operators	and	conditional	statements	in	Verilog.	Let’s	start	with
relational	operators.

8.2.1.1	Relational	Operators	in	Verilogs
While	constructing	a	Verilog	description,	we	may	need	to	compare	two

variables	or	vectors.	Verilog	has	specific	operators	for	this	purpose.	We	provide
operators	to	be	used	in	this	book	and	their	explanation	in	Table	8.4	using	two
binary	variables	x	and	y.	As	these	operations	are	executed,	their	result	will	be

either	logic	level	0	or	1	based	on	whether	the	given	condition	is	satisfied	or	not.

Listing	8.5	Verilog	Description	of	One-Bit	Comparator

TABLE	8.4	Relational	Operators	in
Verilog

8.2.1.2	Conditional	Statements	in	Verilog
Verilog	allows	forming	conditional	statements	using	if	keyword	under

behavioral	modeling.	Via	this	keyword,	given	statements	can	be	executed	if	the
condition	is	satisfied.	The	condition	can	be	formed	by	a	single	variable,	two	or
more	variables	combined	with	logical	operators,	or	relational	operators.	The
syntax	of	a	conditional	statement	using	the	if	keyword	is	as	follows:

The	if	keyword	also	allows	using	else	if	and	else	keywords.	The	syntax
for	their	usage	is	as	follows.	The	else	if	keyword	allows	adding	a	new
condition	(in	a	sequential	manner).	The	else	keyword	is	executed	if	none	of	the
above	conditions	are	satisfied.

An	N-bit	comparator	can	be	constructed	by	the	if	keyword.	We	provide	such
a	Verilog	description	only	for	behavioral	modeling	in	Listing	8.6.	Here,	two
vectors	each	with	four-bits	(x	and	y)	are	compared	and	the	result	is	written	to
another	vector	comp.	If	the	first	vector	is	greater	than	the	second	one,	then
comp[2]=1.	If	the	second	vector	is	greater	than	the	first	one,	then	comp[0]=1.
Finally,	if	the	two	vectors	are	equal,	then	comp[1]=1.	We	provide	the	RTL
schematic	of	the	four-bit	comparator	in	Fig.	8.4.	As	can	be	seen	in	this	figure,
equality	operators	and	multiplexers	are	used	in	synthesizing	the	Verilog
description.	We	will	analyze	how	the	comparator	is	implemented	in	an	FPGA	in
Sec.	8.8.

Listing	8.6	Verilog	Description	of	Four-Bit	Comparator	Using	if	Keyword

FIGURE	8.4	RTL	schematic	of	four-bit	comparator.

8.2.2	Comparators	in	VHDL
We	next	provide	the	VHDL	description	of	the	one-bit	comparator	in	terms	of

the	dataflow	modeling	in	Listing	8.7.	As	in	the	Verilog	description	in	Listing
8.5,	we	directly	implement	the	circuit	in	Fig.	8.3.	Hence,	input	bits	to	be
compared	are	represented	by	binary	variables	x	and	y.	Output	values	are
represented	by	binary	variables	g,	eq,	and	l.
The	VHDL	description	of	an	N-bit	comparator	using	dataflow	modeling	will

be	complex.	Therefore,	behavioral	modeling	will	be	more	appropriate	for	this
case.	To	do	so,	we	will	introduce	relational	operators	and	conditional	statements
in	VHDL.	Let’s	start	with	relational	operators.

8.2.2.1	Relational	Operators	in	VHDL

While	constructing	a	VHDL	description,	we	may	need	to	compare	two
variables	or	arrays.	As	in	Verilog,	VHDL	has	specific	operators	for	this	purpose.
We	provide	the	operators	to	be	used	in	this	book	and	their	explanation	using	two
binary	variables	x	and	y	in	Table	8.5.	As	these	operations	are	executed,	their
result	will	be	either	logic	level	0	or	1	based	on	whether	the	given	condition	is
satisfied	or	not.

Listing	8.7	VHDL	Description	of	One-Bit	Comparator

TABLE	8.5	Relational	Operators	in
VHDL

8.2.2.2	Conditional	Statements	in	VHDL
As	in	Verilog,	VHDL	allows	adding	conditional	statements	to	a	behavioral

description	using	if	keyword.	Via	this	keyword,	given	statements	can	be
executed	if	the	condition	is	satisfied.	The	condition	can	be	formed	by	a	single
signal,	two	or	more	signals	combined	with	logical	operators,	or	relational
operators.	The	syntax	of	a	conditional	statement	using	the	if	keyword	is	as
follows:

The	if	keyword	also	allows	using	elsif	and	else	keywords.	The	syntax	for
their	usage	is	as	follows.	The	elsif	keyword	allows	adding	a	new	condition	(in
a	sequential	manner).	The	else	keyword	is	executed	if	none	of	the	above
conditions	are	satisfied.

An	N-bit	comparator	can	be	constructed	by	the	if	keyword.	We	provide	such
a	VHDL	description	only	for	behavioral	modeling	in	Listing	8.8.	Here,	two
arrays	each	being	four-bits	(x	and	y)	are	compared	and	the	result	is	written	to
another	array	comp.	If	the	first	array	is	greater	than	the	second	one,	then
comp(2)=1.	If	the	second	array	is	greater	than	the	first	one,	then	comp(0)=1.
Finally,	if	the	two	arrays	are	equal,	then	comp(1)=1.	The	RTL	schematic	of	the
VHDL	description	will	be	as	in	Fig.	8.4.

Listing	8.8	VHDL	Description	of	Four-Bit	Comparator	Using	the	if
Keyword

TABLE	8.6	Truth	Table	of	Two-to-
Four	Decoder

8.3	Decoders
Basic	usage	of	a	decoder	is	to	decode	its	input	and	give	specific	output

corresponding	to	it.	In	general,	the	decoder	has	N	inputs	and	2N	outputs	to	cover

all	input	combinations.	Let’s	focus	on	the	two-to-four	decoder	with	the	truth
table	presented	in	Table	8.6.	As	can	be	seen	in	this	table,	there	are	two	inputs
and	four	(22)	outputs.	The	output	corresponding	to	a	given	input	will	be	at	logic
level	1.	For	this	combination,	all	other	outputs	will	be	at	logic	level	0.	Hence,	the
input	is	decoded.
The	decoder	can	be	constructed	by	AND	and	NOT	gates.	The	circuit	diagram

of	the	two-to-four	decoder	will	be	as	in	Fig.	8.5.	As	can	be	seen	in	this	figure,
the	decoder	is	constructed	by	two	NOT	and	four	AND	gates.	If	we	consider	y0,
it	gives	logic	level	1	only	when	x0	and	x1	are	at	logic	level	0.	Therefore,	zeroth
input	sets	output	y0.	This	input	combination	sets	all	other	outputs	to	logic	level
0.

FIGURE	8.5	Circuit	diagram	of	two-to-four	decoder.

8.3.1	Decoders	in	Verilog
We	provide	the	Verilog	description	of	the	two-to-four	decoder	in	Listing	8.9.

Here,	we	implemented	the	circuit	in	Fig.	8.5.	Therefore,	input	to	the	decoder	is
represented	by	the	two-element	vector	x.	The	output	of	the	decoder	is
represented	by	the	four-element	vector	y.
The	Verilog	description	of	the	three-to-eight	decoder	using	dataflow	and

structural	modeling	will	be	complex.	Behavioral	modeling	will	be	more
appropriate	for	this	case.	Here,	we	can	use	the	if	keyword	to	construct
conditional	statements.	However,	Verilog

Listing	8.9	Verilog	Description	of	Two-to-Four	Decoder

also	has	another	keyword	which	is	more	appropriate	for	the	decoder	structure.
This	keyword	is	case	with	the	syntax	as	follows:

As	can	be	seen	here,	the	variable	to	be	used	in	the	case	statement	is	defined	in
parentheses	just	after	the	keyword.	For	each	value	of	this	variable,	a	statement	is

assigned.	If	we	have	more	than	one	statement	for	a	variable,	then	we	should	use
block	keywords	(begin	and	end)	to	encapsulate	them.	Note	that	variable	values
need	not	be	exhaustive.	We	can	only	define	values	of	interest.	Then,	we	can
define	a	default	value	for	the	rest.	Moreover,	we	can	group	variable	values	by
adding	a	comma	in	between.	This	way,	we	can	eliminate	duplicates.	We
provided	such	an	example	on	the	fourth	and	fifth	values	above.
The	three-to-eight	decoder	can	be	constructed	by	the	case	keyword.	We

provide	such	a	Verilog	description	only	for	behavioral	modeling	in	Listing	8.10.
In	this	description,	the	input	to	the	decoder	is	represented	by	the	three-element
vector	x.	The	output	of	the	decoder	is	represented	by	the	eightelement	vector	y.
We	provide	the	RTL	schematic	of	the	three-to-eight	decoder	in	Fig.	8.6.	As	can
be	seen	in	this	figure,	only	a	block	memory	element	(ROM,	to	be	explored	in
Sec.	9.5)	is	used	in	synthesizing	the	Verilog	description.	We	will	analyze	how
the	decoder	is	implemented	in	an	FPGA	in	Sec.	8.8.

FIGURE	8.6	RTL	schematic	of	three-to-eight	decoder.

Listing	8.10	Verilog	Description	of	Three-to-Eight	Decoder	Using	case
Keyword

8.3.2	Decoders	in	VHDL
We	next	provide	the	VHDL	description	of	the	two-to-four	decoder	in	terms	of

dataflow	modeling	in	Listing	8.11.	As	in	the	Verilog	description	in	Listing	8.9,
we	directly	implement	the	circuit	in	Fig.	8.5.	Therefore,	the	input	to	the	decoder
is	represented	by	a	two-element	array	x.	The	output	of	the	decoder	is	represented
by	a	four-element	array	y.
As	in	Verilog,	the	VHDL	description	of	the	three-to-eight	decoder	using

dataflow	and	structural	modeling	will	be	complex.	Behavioral	modeling	will	be
more	appropriate	for	this	case.	Here,	we	can	use	the	if	keyword	to	construct
conditional	statements.	However,	VHDL	also	has	another	keyword	which	is
more	appropriate	for	the	decoder	structure.	This	keyword	is	case	with	the	syntax
as	follows:

Listing	8.11	VHDL	Description	of	Two-to-Four	Decoder

Listing	8.12	VHDL	Description	of	Three-to-Eight	Decoder	Using	case
Keyword

As	can	be	seen	here,	the	variable	to	be	used	in	the	case	statement	is	defined
just	after	the	keyword.	For	each	value	of	this	variable,	a	statement	is	assigned.
The	reader	can	use	the	others	keyword	to	define	the	default	case.
The	three-to-eight	decoder	can	be	constructed	by	the	case	keyword.	We

provide	such	a	VHDL	description	only	for	behavioral	modeling	in	Listing	8.12.
In	this	description,	the	input	to	the	decoder	is	represented	by	a	three-element
array	x.	The	output	of	the	decoder	is	represented	by	an	eightelement	array	y.	The
RTL	schematic	of	the	VHDL	description	will	be	as	in	Fig.	8.6.

8.4	Encoders
The	encoder	works	just	as	the	opposite	of	the	decoder.	Its	function	is	to

encode	a	given	input	and	provide	encoded	output.	In	general,	an	encoder	has	at
most	2N	inputs	and	N	outputs.	Let’s	focus	on	the	four-to-two	encoder	with	the
truth	table	presented	in	Table	8.7.

TABLE	8.7	Truth	Table	of	the	Four-to-
Two	Encoder

As	can	be	seen	in	Table	8.7,	the	output	of	the	encoder	is	the	binary
representation	of	the	input.	While	constructing	the	truth	table,	we	assumed	that
no	two	inputs	will	have	logic	level	1	at	the	same	time.	If	such	a	case	occurs,	then
the	output	of	the	decoder	becomes	unpredictable.	To	overcome	this	problem,	we
can	add	priority	to	inputs	such	that	the	output	is	the	one	with	the	higher
precedence.	Based	on	this	form,	the	new	truth	table	becomes	as	in	Table	8.8.
Here,	don’t	care	conditions	are	represented	by	“	-	“	sign.	Within	the	priority
encoder,	we	still	assume	that	all	inputs	will	not	be	zero	at	the	same	time.	To
check	whether	such	an	input	comes,	we	can	add	a	valid	signal,	v,	to	the	output.
This	will	indicate	that	the	obtained	output	is	either	valid	or	not.

TABLE	8.8	Truth	Table	of	Four-to-
Two	Priority	Encoder

Based	on	Table	8.8,	we	can	construct	the	combinational	circuit	of	the	four-to-
two	priority	encoder	as	follows:

The	above	input–output	relations	lead	to	the	circuit	diagram	of	the	four-to-two
priority	encoder	as	in	Fig.	8.7.

FIGURE	8.7	Circuit	diagram	of	four-to-two	priority	encoder.

8.4.1	Encoders	in	Verilog
We	provide	the	Verilog	description	of	the	four-to-two	priority	encoder	in

Listing	8.13.	Here,	we	directly	implement	the	circuit	in	Fig.	8.7.	Therefore,	the
input	of	the	encoder	is	represented	by	a	four-element	vector	x.	The	output	of	the
encoder	is	represented	by	a	two-element	vector	y	and	a	binary	variable	v.
We	next	focus	on	an	eight-to-three	priority	encoder.	Unfortunately,	the

dataflow	and	structural	models	will	be	complex	for	this	device.	Therefore,	we
will	provide	only	the	behavioral	model	in	Verilog.	Here,	we	will	again	benefit
from	the	case	keyword.	However,	since	we	have	don’t	care	conditions	in
operation,	we	will	use	the	casex	keyword	instead.	We	provide	the	Verilog
description	in	Listing	8.14.	In	this	description,	the	input	to	the	encoder	is
represented	by	an	eightelement	vector	x.	The	output	of	the	encoder	is
represented	by	a	three-element	vector	y.	Within	this	description,	we	discarded
the	valid	(v)	output.	Instead,	we	set	the	output	to	high	impedance	(z)	for	such
cases.	We	provide	the	RTL	schematic	of	the	eight-to-three	priority	encoder	in
Fig.	8.8.	As	can	be	seen	in	this	figure,	two	block	memory	elements	(ROM)	are
used	in	synthesizing	the	Verilog	description.	We	will	analyze	how	priority
encoder	is	implemented	in	an	FPGA	in	Sec.	8.8.

FIGURE	8.8	RTL	schematic	of	an	eight-to-three	priority	encoder.

Listing	8.13	Verilog	Description	of	Four-to-Two	Priority	Encoder

Listing	8.14	Verilog	Description	of	Eight-to-Three	Priority	Encoder	Using
casex	Keyword

8.4.2	Encoders	in	VHDL
We	next	provide	the	VHDL	description	of	the	four-to-two	priority	encoder	in

terms	of	the	dataflow	modeling	in	Listing	8.15.	As	in	the	Verilog	description	in
Listing	8.9,	we	directly	implement	the	circuit	in	Fig.	8.7.	Therefore,	the	input	to
the	encoder	is	represented	by	a	four-element	array	x.	The	output	of	the	encoder
is	represented	by	a	two-element	array	y	and	a	binary	variable	v.
As	in	Verilog,	the	dataflow	modeling	of	an	eight-to-three	encoder	in	VHDL

will	be	complex.	Therefore,	we	consider	only	the	behavioral	model	of	this
device	in	VHDL.	We	next	provide	this	description	in	Listing	8.16.	Here,	the
input	to	the	encoder	is	represented	by	an	eightelement	array	x.	The	output	of	the
encoder	is	represented	by	a	three-element	array	y.	The	RTL	schematic	of	the
VHDL	description	will	be	as	in	Fig.	8.8.

Listing	8.15	VHDL	Description	of	Four-to-Two	Priority	Encoder

Listing	8.16	VHDL	Description	of	Eight-to-Three	Priority	Encoder

8.5	Multiplexers
We	have	introduced	the	multiplexer	in	Sec.	2.2.3.	Moreover,	we	have	used	it

in	the	combinational	circuit	implementation	in	Chap.	7.	For	completeness,	let’s
review	its	fundamental	properties.	The	multiplexer	is	a	combinational	circuit	that
transfers	data	coming	from	several	inputs	to	single	output.	Therefore,	it	can	be
used	to	select	a	specific	input	from	a	group	of	inputs	and	feed	it	to	the	output.	To
perform	this	task,	the	multiplexer	has	N	select	pins,	2N	input	pins,	and	one	output
pin.

TABLE	8.9	Truth	Table	of	Four-to-
One	Multiplexer

Let’s	focus	on	a	four-to-one	multiplexer.	This	device	has	four	inputs,	two
select	pins,	and	one	output	with	the	truth	table	presented	in	Table	8.9.	In	this
table,	select	pins	are	represented	by	binary	variables	s0	and	s1.	Inputs	are	labeled
as	x0,	·	·	·,	x3.	The	output	of	the	multiplexer	is	represented	by	binary	variable	y.

FIGURE	8.9	Circuit	diagram	of	a	four-to-one	multiplexer.

We	can	implement	a	four-to-one	multiplexer	as	in	Fig.	8.9.	As	can	be	seen	in
this	figure,	only	one	AND	gate	is	enabled	for	each	select	input	sequence.	For
instance,	the	first	AND	gate	is	enabled	when	s1	and	s0	are	at	logic	level	0.	All
other	AND	gates	are	disabled	for	this	sequence.	Hence,	only	input	x0	appears	at
output	y.

8.5.1	Multiplexers	in	Verilog
We	provide	the	Verilog	description	of	a	four-to-one	multiplexer	in	Listing

8.17.	Here,	we	directly	implemented	the	circuit	in	Fig.	8.9.	Therefore,	select
values	are	represented	by	a	two-element	vector	s;	inputs	are	represented	by	a
four-element	vector	x;	and	the	output	is	represented	by	binary	variable	y.
For	the	eight-to-one	multiplexer,	the	dataflow	and	structural	representations	in

Verilog	will	be	complex.	On	the	other	hand,	the	behavioral	model	in	Verilog
will	be	neat.	We	next	provide	such	a	description	in	Listing	8.18.	As	in	a	four-to-
one	multiplexer,	select	pins	are	represented	by	a	three-element	vector	s;	inputs
are	represented	by	an	eightelement	vector	x;	and	the	output	is	represented	by	a
binary	variable	y	in	this	description.	We	provide	the	RTL	schematic	of	an	eight-
to-one	multiplexer	in	Fig.	8.10.	As	can	be	seen	in	this	figure,	the	multiplexer	is
used	in	synthesizing	the	Verilog	description	as	it	is.

FIGURE	8.10	RTL	schematic	of	eight-to-one	multiplexer.

Listing	8.17	Verilog	Description	of	Four-to-One	Multiplexer

Listing	8.18	Verilog	Description	of	Eight-to-One	Multiplexer

Listing	8.19	VHDL	Description	of	Four-to-One	Multiplexer

8.5.2	Multiplexers	in	VHDL
We	next	provide	the	VHDL	description	of	a	four-to-one	multiplexer	in	Listing

8.19.	As	in	the	Verilog	description,	here	we	directly	implemented	the	circuit	in
Fig.	8.9.	Therefore,	select	pins	are	represented	by	a	two-element	array	s;	inputs

are	represented	by	a	four-element	array	x;	and	the	output	is	represented	by	a
binary	variable	y.
As	in	Verilog,	the	dataflow	model	of	an	eight-to-one	multiplexer	in	VHDL

will	be	complex.	Therefore,	we	consider	only	the	behavioral	model	for	this
device.	We	next	provide	this	description	in	Listing	8.20.	As	in	a	four-to-one
multiplexer,	select	pins	are	represented	by	a	three-element	array	s;	inputs	are
represented	by	an	eightelement	array	x;	and	the	output	is	represented	by	a	binary
variable	y	in	this	description.	The	RTL	schematic	of	the	VHDL	description	will
be	as	in	Fig.	8.10.

TABLE	8.10	Truth	Table	of	Three-Bit
Even-Parity	Generator

Listing	8.20	VHDL	Description	of	Eight-to-One	Multiplexer

8.6	Parity	Generators	and	Checkers
While	transferring	or	storing	binary	data,	some	bit	values	may	change	because

of	a	physical	effect	or	an	unpredicted	disturbance.	To	check	whether	such	an
undesired	change	has	occurred	or	not,	extra	bits	can	be	added	to	the	data.	This	is
called	parity	generation.	The	idea	here	is	setting	standard	characteristics	to	data
such	that	when	a	change	occurs,	it	can	be	detected	easily.

8.6.1	Parity	Generators
One	simple	method	in	parity	generation	is	adding	an	extra	bit	to	set	the	total

number	of	bits	in	a	binary	data	block	as	even	or	odd.	The	idea	here	is	as	follows.
If	a	bit	value	changes	from	logic	level	1	to	0	(or	vice	versa)	by	an	undesired
effect,	the	total	number	of	even	(or	odd)	bits	will	not	satisfy	the	initial	condition.
Therefore,	the	change	can	be	detected	easily.	There	are	two	options	here.	The
first	option	is	setting	the	total	number	of	ones	to	be	even.	This	is	called	even
parity.	The	second	option	is	setting	the	total	number	of	ones	to	be	odd.	This	is
called	odd	parity.

called	odd	parity.
Let’s	assume	three-bit	data.	Furthermore,	assume	that	even	parity	will	be

applied	to	it.	We	can	form	a	truth	table	to	generate	the	parity	bit	for	each	input
data	combination	as	in	Table	8.10.	Here,	the	three-bit	data	is	represented	by
binary	variables	b0,	b1,	and	b2.	The	generated	even-parity	bit	is	represented	by
binary	variable	pe.
Based	on	Table	8.10,	the	even-parity	bit	can	be	generated	by	the	logic

function	pe	=	b0	⊕	b1	⊕	b2.	Therefore,	the	even-parity	generator	can	be
composed	of	two	XOR	gates	with	two	inputs.	The	corresponding	circuit	diagram
will	be	as	in	Fig.	8.11.

FIGURE	8.11	Circuit	diagram	of	three-bit	even-parity	generator.

If	odd	parity	is	required,	the	only	change	needed	will	be	inverting	the
generated	parity	bit.	Therefore,	for	the	above	example,	the	odd-parity	bit	will	be
po	=	pe.	An	N-bit	parity	generator	can	be	constructed	in	the	same	way.	Here,	we
will	need	N	−	1	XOR	gates.	Besides,	the	architecture	will	be	the	same.

8.6.2	Parity	Checkers
After	adding	a	parity	bit,	we	can	construct	a	combinational	circuit	to	check

whether	an	undesired	change	has	occurred	in	the	data	during	transmission	or
storage.	To	do	so,	we	can	use	the	same	circuitry	as	in	the	parity	generator	with
an	additional	parity	bit.	This	is	called	parity	checker.	Let’s	continue	with	the
previous	example	having	even	parity	for	three	bits	of	data.	Parity	checker
circuitry	can	be	constructed	by	logic	function	c	=	b0	 	b1	 	b2	 	pe.	Hence,	we
will	use	four	XOR	gates	each	having	two	inputs.	The	circuit	diagram	for	this
setup	will	be	as	in	Fig.	8.12.	An	N-bit	parity	checker	can	be	constructed	in	the
same	way.	Here,	we	will	need	N	XOR	gates.	Besides,	the	architecture	will	be	the
same.

FIGURE	8.12	Circuit	diagram	of	three-bit	even-parity	checker.

8.6.3	Parity	Generators	and	Checkers	in	Verilog
We	provide	the	Verilog	description	of	a	three-bit	even-parity	generator	in

Listing	8.21.	Here,	we	directly	implement	the	circuit	in	Fig.	8.11.	Therefore,	the
input	is	represented	by	a	three-bit	vector	b.	The	generated	parity	bit	is
represented	by	binary	variable	pe.	We	provide	the	RTL	schematic	of	a	three-bit
even-parity	generator	in	Fig.	8.13.	As	can	be	seen	in	this	figure,	two	XOR	gates
are	used	in	synthesizing	the	Verilog	description.

FIGURE	8.13	RTL	schematic	of	three-bit	even-parity	generator.

Listing	8.21	Verilog	Description	of	Three-Bit	Even-Parity	Generator

Listing	8.22	Verilog	Description	of	Three-Bit	Even-Parity	Checker

We	next	provide	the	Verilog	description	of	a	three-bit	even-parity	checker	in
Listing	8.22.	Here,	we	directly	implement	the	circuit	in	Fig.	8.12.	Different	from
the	three-bit	parity	generator,	this	description	has	pe	bit	as	input.	The	output	of
the	parity	checker	is	c	in	the	description.	We	provide	the	RTL	schematic	of	a
three-bit	even-parity	checker	in	Fig.	8.14.	As	can	be	seen	in	this	figure,	three
XOR	gates	are	used	in	synthesizing	the	Verilog	description.

FIGURE	8.14	RTL	schematic	of	three-bit	even-parity	checker.

8.6.4	Parity	Generators	and	Checkers	in	VHDL
We	next	provide	the	VHDL	description	of	the	three-bit	even	parity	generator

in	Listing	8.23.	As	in	Verilog,	we	directly	implement	the	circuit	in	Fig.	8.11.
Hence,	the	input	is	represented	by	the	three-bit	array	b.	The	generated	parity	bit

is	represented	by	binary	variable	pe.	The	RTL	schematic	of	the	VHDL
description	will	be	as	in	Fig.	8.13.
We	finally	provide	the	VHDL	description	of	a	three-bit	even-parity	checker	in

Listing	8.24.	As	in	Verilog,	we	directly	implement	the	circuit	in	Fig.	8.12.
Different	from	the	three-bit	parity	generator,	this	description	has	the	pe	bit	as	an
input.	The	output	of	the	parity	checker	is	c	in	the	description.	The	RTL
schematic	of	the	VHDL	description	will	be	as	in	Fig.	8.14.

Listing	8.23	VHDL	Description	of	Three-Bit	Even-Parity	Generator

Listing	8.24	VHDL	Description	of	Three-Bit	Even-Parity	Checker

8.7	Applications	on	Combinational	Circuit	Blocks
We	can	improve	applications	in	previous	chapters	using	combinational	circuit

blocks.	Therefore,	we	will	reconsider	calculator,	home	alarm,	and	car	park

blocks.	Therefore,	we	will	reconsider	calculator,	home	alarm,	and	car	park
occupied	slot	counting	systems	in	this	section.

8.7.1	Improving	the	Calculator
We	can	improve	the	calculator	introduced	in	Sec.	6.10	using	the	case

keyword.	The	modified	Verilog	description	for	the	calculator	will	be	as	in
Listing	8.25.	As	can	be	seen	in	this	description,	the	case	keyword	improved	the
readability	of	the	description.
We	represent	this	module	as	an	IP	block	and	provide	a	modified	top	module

for	the	calculator	in	Listing	8.26.	Here,	the	calculator	IP	is	represented	as
calculator_0.

8.7.2	Improving	the	Home	Alarm	System
We	can	improve	the	home	alarm	system	using	a	sevensegment	display.	When

the	system	is	active,	the	display	will	show	character	A.	When	it	is	closed,	the
display	will	show	character	O.	To	do	so,	we	should	add	a	sevensegment	display
decoder	module	to	the	system.	This	module	converts	the	provided	hexadecimal
number	to	the	corresponding	sevensegment	display	pattern	as	introduced	in
Exercise	7.14.	We	provide	the	Verilog	description	of	the	sevensegment	display
decoder	module	in	Listing	8.27.	We	should	form	an	IP	block	for	this	module	to
be	used	in	the	application.	The	VHDL	version	of	the	sevensegment	display
decoder	module	is	also	available	in	Listing	8.28.

Listing	8.25	Modified	Calculator	Using	the	case	Keyword	in	Verilog

Listing	8.26	Improved	Calculator	Implemented	on	the	Basys3	Board	in
Verilog

Listing	8.27	Verilog	Description	of	the	SevenSegment	Display	Decoder
Module

We	provide	the	modified	Verilog	description	for	the	application	in	Listing
8.29.	Here,	the	home	alarm	system	in	Listing	7.5	is	taken	as	an	IP	block.
Therefore,	we	assume	that	the	reader	has	converted	it	to	an	IP	block	and	added	it
to	the	project.

8.7.3	Improving	the	Car	Park	Occupied	Slot	Counting	System
We	can	improve	the	car	park	occupied	slot	counting	system	in	two	ways.

First,	we	can	extend	the	number	of	slots	to	be	examined	to	nine.	We	provide	the
modified	Verilog	description	for	the	car	park	occupied	slot	counting	system	in
Listing	8.30.	We	should	form	an	IP	block	for	this	part	to	be	used	in	the	project.
Second,	we	can	display	the	number	of	occupied	slots	on	the	rightmost

sevensegment	display	of	the	Basys3	board.	To	do	so,	we	should	add	the
sevensegment	display	decoder	module	in	Listing	8.27.	Based	on	these
modifications,	the	Verilog	description	of	the	top	module	for	car	park	occupied

slot	counting	system	will	be	as	in	Listing	8.31.

Listing	8.28	VHDL	Description	of	the	SevenSegment	Display	Decoder
Module

Listing	8.29	Improved	Home	Alarm	System	Implemented	on	the	Basys3
Board	in	Verilog

Listing	8.30	Verilog	Description	of	the	Car	Park	Occupied	Slot	Counting
System	for	Nine	Cars

Listing	8.31	Improved	Car	Park	Occupied	Slot	Counting	System
Implemented	on	the	Basys3	Board	in	Verilog

8.8	FPGA	Building	Blocks	Used	in	Combinational
Circuit	Blocks
We	have	provided	the	RTL	schematic	of	combinational	circuit	blocks

considered	in	previous	sections.	The	reader	can	observe	that	different	RTL
building	blocks	are	used	in	implementing	the	comparator,	decoder,	encoder,
multiplexer,	parity	generators,	and	checkers.	In	fact,	all	these	combinational
circuit	blocks	are	implemented	by	LUTs	on	an	FPGA.	To	be	more	specific,	four-
bit	comparator	requires	five	LUTs.	An	eight-to-three	decoder	needs	four	LUTs.
In	a	similar	manner,	a	three-to-eight	encoder	needs	four	LUTs.	An	eight-to-one
multiplexer	needs	two	LUTs.	Finally,	a	three-bit	parity	generator	and	checker
requires	one	LUT	for	each.	Hence,	CLBs	will	be	the	main	block	to	be	used	in
this	chapter.	Besides,	interconnect	resources	and	input/output	blocks	are	needed
while	implementing	combinational	circuit	blocks	considered	in	this	chapter.

8.9	Summary
This	chapter	discussed	the	combinational	circuit	blocks	extensively	used	in

digital	design.	We	specifically	focused	on	adders,	comparators,	decoders,
encoders,	multiplexers,	parity	generators,	and	checkers.	We	provided	Verilog
and	VHDL	descriptions	of	each	building	block.	We	also	introduced	conditional
statements	and	relational	operators	while	constructing	implementations.	These
will	be	extensively	used	in	the	following	chapters.	Therefore,	the	reader	should
practice	using	these.

8.10	Exercises
8.1			Use	the	full	adder	block	in	Sec.	8.1.2	to	add	two	four-bit	numbers.

a.	Implement	this	device	in	Verilog	or	VHDL.
b.	Compare	this	implementation	with	the	one	realized	by	the	“	+	“
operator	introduced	in	Chap.	6.

8.2			Implement	a	four-bit	full	adder/subtractor.	The	user	decides	on
operation	type	by	a	control	input.	When	the	control	input	is	logic	level	1,
subtraction	will	be	done.	When	the	control	input	is	logic	level	0,	addition	is
done.	Implement	this	device	in	Verilog	or	VHDL.
8.3			Design	an	eightbit	comparator	for	unsigned	numbers.	Implement	this
device	in	Verilog	or	VHDL.
8.4			Repeat	Exercise	8.3	for	eightbit	signed	numbers.
8.5			Design	an	eightbit	comparator	for	unsigned	numbers.	The	output	of
the	comparator	will	be	the	larger	number.	Implement	this	device	in	Verilog
or	VHDL.
8.6			Repeat	Exercise	8.5	for	eightbit	signed	numbers.
8.7			Implement	the	two-to-four	decoder	in	Verilog	or	VHDL	using

a.	case	keyword.
b.	if	keyword.

8.8			How	can	we	realize	a	two-input	logic	function	z	=	F(x,	y)	using	a	two-
to-four	decoder	and	four-input	OR	gate.
8.9			A	combinational	circuit	is	represented	in	a	SOP	form	F(x,	y,	z)	=	∑(0,
2,	4).	Implement	this	circuit	using	one	decoder	and	one	three-input	OR
gate.

8.10			Implement	the	four-to-two	encoder	in	Verilog	or	VHDL	using
a.	case/casex	keyword.
b.	if	keyword.

8.11			Represent	logic	function	of	the	four-to-one	multiplexer	in	Fig.	8.9
a.	in	SOP	form.
b.	in	POS	form.

8.12			Implement	the	four-to-one	multiplexer	in	Verilog	or	VHDL	using
a.	case/casex	keyword.
b.	if	keyword.

8.13			Find	the	SOP	form	of	three-bit	even
a.	parity	generator.
b.	parity	checker.

8.14			Use	multiplexers	and	memory	elements	to	realize	a	three-bit	even
a.	parity	generator.
b.	parity	checker.

8.15			(Arithmetic	operations	on	signed	numbers.)	Use	conditional	statements
to	apply	arithmetic	operations	on	fixed-point	signed	numbers	introduced	in
Chap.	6.	Implement	these	operations	in	Verilog	or	VHDL.

8.16			(Car	park	occupied	slot	counting	system.)	Redesign	the	car	park
occupied	slot	counting	system	in	Sec.	7.6.3	using	conditional	statements
and	arithmetic	operations	in	Verilog	or	VHDL.	The	new	park	has	16	slots.

8.17			(Fire	alarm	system.)	Redesign	the	fire	alarm	system	in	Exercise	7.13
using	conditional	statements	in	Verilog	or	VHDL.

8.18			(Keypad	decoder.)	Redesign	the	keypad	decoder	system	in	Exercise	7.15
using	conditional	statements	in	Verilog	or	VHDL.

8.19			Repeat	the	Exercise	7.16	using	conditional	statements	in	Verilog	or
VHDL.

8.20			(Even/odd	number	detector.)	Design	a	combinational	circuit	to	detect
whether	a	given	N-bit	number	is	even	or	odd.	Implement	the	designed
circuit	using	arithmetic	operations	and	conditional	statements	in	Verilog	or
VHDL.

8.21			(ASCII	lowercase/uppercase	converter.)	Design	a	combinational	circuit
to	detect	whether	a	given	ASCII	code	corresponds	to	a	character	in
lowercase	form.	If	this	is	the	case,	then	the	circuit	converts	the	character	to
uppercase	form.	Implement	the	designed	circuit	using	arithmetic
operations	and	conditional	statements	in	Verilog	or	VHDL.

8.22			(Joystick	application.)	Repeat	Exercise	7.20	using	conditional
statements.

8.23			(Moving	LEDs.)	Write	a	complete	Verilog	or	VHDL	description	for	the
following	operation.	Four	switches	on	the	Basys3	board	(sw[0],	sw[1],
sw[14],	sw[15])	will	control	the	pattern	of	16	LEDs	(from	led[0]	to
led[15]).	Here

•	led[7]	and	led[8]	will	turn	on	when	all	switches	are	in	off
condition	(initial	condition).

•	led[0]	and	led[1]	will	turn	on	when	only	sw[0]	is	on.
•	led[1]	and	led[2]	will	turn	on	when	only	sw[1]	is	on.
•	led[13]	and	led[14]	will	turn	on	when	only	sw[14]	is	on.
•	led[14]	and	led[15]	will	turn	on	when	only	sw[15]	is	on.
•	led[7]	and	led[8]	will	turn	on	for	all	other	combinations	of	these
switches.
Also	each	pattern	has	a	condition	number	which	will	be

displayed	on	the	leftmost	sevensegment	display	digit	as	follows.
The	sevensegment	display	shows	0	for	initial	condition,	1	when
sw[0]	is	on,	2	when	sw[1]	is	on,	3	when	sw[14]	is	on,	4	when
sw[15]	is	on,	and	0	for	all	other	conditions.

8.24				(Car	door	alarm	system.)	In	this	application,	we	will	design	a	car	door
alarm	system.	The	system	should	allow	checking	all	four	doors	and	the
trunk	(back).	We	will	use	five	buttons	on	the	Basys3	board.	In	our
application,	btnL	and	btnR	represent	front	doors.	btnU	and	btnD	represent
back	doors.	btnC	represents	the	trunk	door.	We	will	show	whether	a	door
is	open	or	closed	by	the	rightmost	sevensegment	display	digit	on	the
Basys3	board.	Based	on	the	label	of	segments	in	Fig.	7.25,	segments	F	and
B	will	show	status	of	front	doors.	Segments	E	and	C	will	show	status	of
back	doors.	Segment	D	will	show	status	of	the	trunk	door.	When	a	segment
is	on,	it	indicates	that	the	corresponding	door	is	open.	When	all	the	doors
are	closed,	led[0]	on	the	Basys3	board	should	turn	on.	Write	a	complete
Verilog	or	VHDL	description	to	realize	this	application.

8.25			(Displaying	numbers.)	Write	a	complete	Verilog	or	VHDL	description	on
the	Basys3	board	which	will	take	four-bit	input	from	switches	(from	sw0
to	sw3)	and	show	it	on	the	sevensegment	display	as	a	decimal	number.
Conditions	for	displaying	the	number	is	given	below:

•	If	btnL	is	pressed,	the	number	will	be	displayed	only	on	the	first
sevensegment	display	digit.
•	If	btnD	is	pressed,	the	number	will	be	displayed	only	on	the
second	sevensegment	display	digit.
•	If	btnR	is	pressed,	the	number	will	be	displayed	only	on	the
third	sevensegment	display	digit.
•	If	btnU	is	pressed,	the	number	will	be	displayed	only	on	the
fourth	sevensegment	display	digit.

•	If	btnC	is	pressed,	the	number	will	be	displayed	on	all
sevensegment	display	digits	at	the	same	time.
•	If	more	than	one	button	is	pressed	at	the	same	time,	the	number
should	be	displayed	on	the	corresponding	display	digit	according
to	the	conditions	given	above.
•	If	none	of	the	buttons	are	pressed,	all	display	digits	should	be
turned	off.
•	If	the	number	to	be	displayed	is	greater	than	9,	character	E
should	be	displayed.

CHAPTER	9

Data	Storage	Elements

Data	storage	in	a	digital	system	can	be	made	in	two	ways.	First,	the	system
can	be	designed	as	a	sequential	circuit,	which	will	be	introduced	in	the	next
chapter.	In	such	a	circuit,	the	output	depends	on	past	input	or	output	besides
current	input	values.	Hence,	the	data	should	be	stored	within	the	system.	This
operation	is	generally	performed	by	flip-flops.	Second,	the	data	can	be	stored	in
a	memory	block	associated	with	the	system.	The	memory	block	can	also	be
constructed	by	flip-flops.	Therefore,	we	will	introduce	data	storage	elements
starting	from	latches	as	basic	building	block	of	flip-flops	in	this	chapter.	Then,
we	will	introduce	different	flip-flop	types.	Flip-flops	can	be	used	to	form
registers	as	basic	elements	of	memory	blocks.	Therefore,	we	will	evaluate
register	formation	next.	Afterward,	we	will	focus	on	read-only	memory	(ROM)
and	random	access	memory	(RAM).	In	constructing	ROM	and	RAM,	we	will
extensively	use	IP	blocks	provided	by	Xilinx.

9.1	Latches
A	latch	is	a	basic	data	storage	element	that	can	store	one	bit	of	data.	Next,	we

introduce	SR	and	D	latches.

9.1.1	SR	Latch
An	SR	latch	is	the	simplest	data	storage	element	composed	of	either	two

cross-coupled	NAND	or	NOR	gates.	Let’s	look	at	an	SR	latch	composed	of	two
NOR	gates	with	circuit	diagram	in	Fig.	9.1.	As	can	be	seen	in	this	figure,	an	SR
latch	has	two	inputs	as	set	(s)	and	reset	(r).	It	has	two	outputs	as	q	and	 	which
are	inverse	of	each	other.

FIGURE	9.1	Circuit	diagram	of	SR	latch.

We	can	represent	input/output	characteristics	of	an	SR	latch	in	tabular	form	in
a	characteristic	table.	The	difference	between	this	table	and	the	truth	table	is	that
it	can	also	represent	previous	and	future	output	values.	The	characteristic	table
of	an	SR	latch	is	presented	in	Table	9.1.	As	can	be	seen	in	this	table,	when	inputs
s	and	r	have	logic	levels	0	and	1,	respectively,	the	output	q	will	be	at	logic	level
0.	In	other	words,	the	SR	latch	is	reset.	When	inputs	s	and	r	have	logic	levels	1
and	0,	respectively,	the	output	q	will	be	at	logic	level	1.	We	can	call	this	as
setting	the	SR	latch.	When	both	s	and	r	have	logic	level	0,	the	SR	latch	stays	in
its	previous	state	qprev.	Hence,	it	stores	the	previous	output	value.	When	s	and	r
are	at	logic	level	1,	we	can	call	this	input	as	both	setting	and	resetting	(SR)	latch
at	the	same	time.	Here,	a	contradiction	occurs	such	that	both	 	and	q	should	be
at	logic	level	1.	However,	 	is	the	inverse	of	q.	The	output	cannot	be	predicted
due	to	race	conditions	in	transistor	level	for	such	a	condition.	Hence,	this	input
combination	should	be	avoided	while	using	the	SR	latch.	The	output	at	this	stage
is	represented	by	the	undefined	symbol	(U)	in	Table	9.1.

TABLE	9.1	Characteristic	Table	of
Latch	with	Control	Input

We	can	add	a	control	input	to	the	SR	latch.	Via	this	input,	we	can	control
when	to	operate	the	device.	The	circuit	diagram	of	the	SR	latch	with	control
input	is	shown	in	Fig.	9.2.

FIGURE	9.2	Circuit	diagram	of	SR	latch	with	control	input.

The	characteristic	table	of	the	SR	latch	with	control	input	is	presented	in
Table	9.2.	Here,	the	only	difference	from	the	SR	latch	is	control	input	c.	When
this	input	is	at	logic	level	0,	the	output	of	the	SR	latch	will	be	kept	in	its	previous
value	independent	of	inputs	applied	to	it.	Therefore,	inputs	are	represented	by
the	don’t	care	symbol	in	Table	9.2	when	c	is	at	logic	level	0.	The	SR	latch
becomes	active	when	c	is	set	to	logic	level	1.	Afterward,	its	output	can	be
changed	by	s	and	r	inputs.

TABLE	9.2	Characteristic	Table	of	SR
Latch	with	Control	Input

9.1.2	D	Latch
One	way	to	avoid	setting	and	resetting	the	SR	latch	at	the	same	time	is	always

feeding	inverse	inputs	to	s	and	r.	We	can	achieve	this	by	adding	a	NOT	gate
between	them.	We	call	the	new	structure	a	D	(or	data)	latch	since	it	saves	one	bit
of	data.	The	circuit	diagram	of	a	D	latch	is	depicted	in	Fig.	9.3.

FIGURE	9.3	Circuit	diagram	of	D	latch.

The	characteristic	table	of	the	D	latch	(with	control	input)	is	presented	in
Table	9.3.	As	can	be	seen	in	this	table,	when	the	control	input	is	at	logic	level	0,
the	D	latch	keeps	its	previous	output	value.	We	can	save	the	data	in	the	D	latch
by	providing	logic	level	1	to	its	control	input.	Afterward,	the	bit	value	at	the
input	d	will	be	saved	in	the	latch.	Hence,	when	d	has	logic	level	0,	q	will	be	at
logic	level	0.	When	d	has	logic	level	1,	q	will	be	at	logic	level	1.	Therefore,	the
D	latch	simply	stores	one	bit	of	the	data.	The	symbol	of	the	D	latch	(with	control
input)	is	presented	in	Fig.	9.4.

FIGURE	9.4	Symbol	of	D	latch	with	control	input.

TABLE	9.3	Characteristic	Table	of	D
Latch	with	Control	Input

9.1.3	Latches	in	Verilog
We	can	form	the	latch	description	in	two	different	ways	in	Verilog.	The	first

one	is	by	using	the	circuit	diagram	of	the	latch	and	forming	the	corresponding
structural	or	dataflow	model.	We	will	form	such	a	description	only	for	an	SR
latch.	The	second	way	of	describing	a	latch	is	by	using	a	behavioral	model.	This
will	be	the	form	we	will	be	using	extensively	in	describing	latches.

9.1.3.1	SR	Latch
We	provide	the	Verilog	description	of	the	SR	latch	in	Listing	9.1.	Here,	we

have	structural	and	dataflow	models	of	the	latch	based	on	the	circuit	diagram	in
Fig.	9.1.	Besides,	the	behavioral	model	of	the	SR	latch	is	available	in	the
description.	The	reader	should	enable	the	model	to	be	implemented	while
disabling	other	models.	In	all	three	models,	inputs	of	the	SR	latch	are
represented	by	s	and	r.	Outputs	of	the	latch	are	denoted	by	q	and	qn.	Please	note
the	nonblocking	assignment	usage	in	behavioral	modeling.	As	explained	in	Sec.
5.1.4,	we	will	be	using	nonblocking	assignments	in	the	behavioral	model	of
sequential	circuits.

Listing	9.1	Verilog	Description	of	SR	Latch

We	provide	the	RTL	schematic	of	the	SR	latch	using	the	dataflow	model	in
Fig.	9.5.	As	can	be	seen	in	this	figure,	the	RTL	schematic	is	the	same	as	the

circuit	diagram	in	Fig.	9.1.	Vivado	synthesizes	the	SR	latch	description	in	the
dataflow	model	as	in	Fig.	9.6.	Here,	three-input	and	two-input	look-up	tables
(LUTs)	are	used	in	implementation.	There	is	a	feedback	loop	between	the	output
and	input	of	the	three-input	LUT	which	establishes	the	data	storage	capability	of
the	module.	Remember	that	feedback	loops	from	the	out-put	to	input	are	general
characteristics	of	latches.

FIGURE	9.5	RTL	schematic	of	SR	latch	described	using	dataflow	model.

FIGURE	9.6	Synthesization	result	of	SR	latch	described	using	dataflow	model.

FIGURE	9.7	RTL	schematic	of	SR	latch	described	using	behavioral	model.

We	next	provide	the	RTL	schematic	of	the	SR	latch	using	the	behavioral
model	in	Fig.	9.7.	As	can	be	seen	in	this	figure,	the	RTL	schematic	is	composed
of	two	latches.	Therefore,	the	RTL	schematic	and	circuit	diagram	in	Fig.	9.1	is
not	the	same.	Furthermore,	Vivado	synthesizes	the	SR	latch	description	in	the
behavioral	model	as	in	Fig.	9.8.	As	can	be	seen	in	this	figure,	two	flip-flops	are
used	in	implementation.	Therefore,	dataflow	and	behavioral	models	of	the	same
SR	latch	are	implemented	in	different	ways	in	Vivado.	We	will	analyze	the
difference	between	these	two	implementations	in	detail	in	Sec.	9.8.

FIGURE	9.8	Synthesization	result	of	SR	latch	described	using	behavioral	model.

Listing	9.2	Verilog	Description	of	SR	Latch	with	Control	Input

9.1.3.2	SR	Latch	with	Control	Input

We	next	provide	the	Verilog	description	of	the	SR	latch	with	control	input	in
Listing	9.2.	Here,	we	have	only	the	behavioral	model	of	the	circuit	in	Fig.	9.2.
As	in	the	SR	latch	description	in	Listing	9.1,	inputs	of	the	SR	latch	are
represented	as	s	and	r	with	an	extra	control	input	c.	When	the	control	input	c	is
at	logic	level	0,	the	SR	latch	does	not	respond	to	other	inputs.	Outputs	of	the
latch	are	denoted	by	q	and	qn.
The	synthesization	result	of	the	SR	latch	with	control	input	is	as	in	Fig.	9.9

which	is	almost	the	same	as	Fig.	9.8.	The	only	difference	is	the	control	input.
Therefore,	the	behavioral	model	of	the	SR	latch	with	and	without	control	input	is
implemented	in	a	similar	way	in	Vivado.

FIGURE	9.9	Synthesization	result	of	SR	latch	with	control	input.

9.1.3.3	D	Latch
We	finally	provide	the	Verilog	description	of	the	D	latch	using	the	behavioral

model	in	Listing	9.3.	In	this	description,	inputs	of	the	latch	are	represented	as	d
and	c.	As	in	the	SR	latch	with	control	input,	when	c	is	at	logic	level	0,	the	D
latch	does	not	respond	to	d	input.	Outputs	of	the	latch	are	denoted	by	q	and	qn	in
the	description.
We	provide	the	RTL	schematic	of	a	D	latch	in	Fig.	9.10.	As	can	be	seen	in

this	figure,	the	RTL	schematic	consists	of	two	D	latches	(one	for	each	output).	In
fact,	if	we	had	only	one	output	as	q,	then	the	RTL	schematic	would	consist	of
one	D	latch.	We	will	see	in	Sec.	9.8	why	this	is	the	case.	The	synthesization
result	of	the	D	latch	description	will	be	as	in	Fig.	9.11.	As	can	be	seen	in	this
figure,	one-input	LUT	and	two	flip-flops	are	used	in	implementation.	We	will

analyze	this	implementation	in	detail	in	Sec.	9.8.

FIGURE	9.10	RTL	schematic	of	D	latch.

FIGURE	9.11	Synthesization	result	of	D	latch.

Listing	9.3	Verilog	Description	of	D	Latch

9.1.4	Latches	in	VHDL
As	in	Verilog,	we	can	form	the	latch	description	in	two	different	ways	in

VHDL.	The	first	one	is	using	circuit	diagram	of	the	latch	and	forming	the
corresponding	dataflow	model.	We	provide	this	description	only	for	an	SR	latch.
The	second	way	of	describing	the	latch	is	by	using	a	behavioral	model	as	it	is
easier	to	interpret.	We	do	not	provide	the	RTL	schematic	and	synthesization
results	in	this	section	since	these	will	be	almost	the	same	as	in	Sec.	9.1.3.
However,	we	suggest	the	reader	to	observe	them	in	Vivado.

Listing	9.4	VHDL	Description	of	SR	Latch

9.1.4.1	SR	Latch
We	provide	the	VHDL	description	of	the	SR	latch	in	dataflow	and	behavioral

models	in	Listing	9.4.	Here,	the	dataflow	model	of	the	SR	latch	is	based	on	the
circuit	diagram	in	Fig.	9.1.	As	in	the	corresponding	Verilog	description,	inputs
of	the	SR	latch	are	represented	as	s	and	r.	Outputs	of	the	latch	are	denoted	by	q
and	qn.	In	the	behavioral	model,	the	undefined	output	when	s	=	1	and	r	=	1	is
represented	by	don’t	care	symbol	in	Listing	9.4.

9.1.4.2	SR	Latch	with	Control	Input
We	provide	the	VHDL	description	of	the	SR	latch	with	control	input	in

Listing	9.5.	As	in	the	SR	latch	description	in	Listing	9.4,	inputs	of	the	latch	are
represented	as	s	and	r	with	extra	control	input	c.	When	control	input	c	is	at	logic
level	0,	the	SR	latch	does	not	respond	to	other	inputs.	Outputs	of	the	latch	are

denoted	by	q	and	qn.	Again,	the	undefined	output	when	s	=	1	and	r	=	1	is
represented	by	don’t	care	symbol	in	Listing	9.5	as	in	the	SR	latch	description.

Listing	9.5	VHDL	Description	of	SR	Latch	with	Control	Input

Listing	9.6	VHDL	Description	of	D	Latch

9.1.4.3	D	Latch
We	finally	provide	the	VHDL	description	of	the	D	latch	with	control	input	in

Listing	9.6.	In	this	description,	inputs	of	the	latch	are	represented	as	d	and	c.	As
in	the	SR	latch	with	control	input,	when	c	is	at	logic	level	0,	the	D	latch	does	not
respond	to	d	input.	Outputs	of	the	latch	are	denoted	by	q	and	qn	in	the
description.

9.2	Flip-Flops
A	latch	may	change	its	output	whenever	its	input	changes.	This	may	cause

inconsistency	in	the	operation	of	a	sequential	circuit.	To	overcome	this	problem,
the	clock	signal	introduced	in	Sec.	2.2.7	may	be	used.	Therefore,	the	change	at
the	output	of	a	circuit	may	occur	on	either	the	rising	or	falling	edge	of	the	clock
signal.	To	distinguish	such	devices	from	the	latches	introduced	in	the	previous
section,	we	will	call	them	flip-flops.	There	are	basically	three	flip-flop	types:	D,
JK,	and	T.

9.2.1	D	Flip-Flop
The	D	flip-flop	can	be	constructed	by	connecting	two	D	latches	with	control

input	as	in	Fig.	9.12.	In	this	setup,	let’s	call	the	two	latches	a	leader	and	a

follower,	respectively.	We	can	explain	the	working	principles	of	the	D	flip-flop
as	follows.	The	control	input	of	both	the	leader	and	follower	latches	are
connected	to	the	same	clock	signal.	However,	the	follower	latch	receives	the
inverted	clock	signal.	Therefore,	when	the	clock	signal	reaches	logic	level	1
from	0	(rising	edge	of	the	clock),	the	leader	latch	is	enabled	and	the	follower
latch	is	disabled.	At	this	time,	the	output	of	the	leader	latch	can	be	changed	by	its
input	(hence	the	input	of	the	flip-flop).	The	output	of	the	follower	latch	(hence
the	output	of	the	flip-flop)	does	not	change	during	this	time	interval	since	its
control	input	is	at	logic	level	0.	When	the	clock	signal	reaches	logic	level	0	from
1	(falling	edge	of	the	clock),	the	control	input	of	the	leader	latch	will	be	at	logic
level	0.	Hence,	its	output	will	be	kept	in	its	previous	value.	In	other	words,	the
output	of	the	leader	latch	will	reflect	its	input	when	the	clock	signal	was	at	logic
level	1.	As	can	be	seen	in	Fig.	9.12,	the	output	of	the	leader	latch	is	connected	to
the	input	of	the	follower	latch.	Since	the	control	input	of	the	follower	latch	is	at
logic	level	1,	its	output	is	set	to	its	input.	Therefore,	the	output	of	the	D	flip-flop
changes.	This	operation	is	specifically	called	edge-triggered	since	flip-flop
changes	its	output	during	rising	(or	falling)	edge	of	the	clock	signal.

FIGURE	9.12	Constructing	D	flip-flop	from	two	latches.

The	symbol	of	the	D	flip-flop	is	presented	in	Fig.	9.13.	Here,	the	control	input
is	specifically	represented	by	a	triangle	to	indicate	that	this	device	changes	its
output	on	the	rising	edge	of	the	clock	signal.

FIGURE	9.13	Symbol	of	D	flip-flop.

The	characteristic	table	of	the	D	flip-flop	is	presented	in	Table	9.4.	Here,	we
represent	the	output	of	the	flip-flop	as	q[n	+	1]	to	indicate	the	value	at	the	next
clock	cycle.	We	implicitly	assume	the	present	clock	cycle	as	n.	Within	the
characteristic	table,	the	clock	operation	is	not	explicitly	shown.

TABLE	9.4	Characteristic	Table	of	D
Flip-Flop

TABLE	9.5	Characteristic	Table	of	JK
Flip-Flop

9.2.2	JK	Flip-Flop
The	D	flip-flop	provides	a	good	option	to	save	one	bit	of	data.	We	can	form	a

more	general	flip-flop	structure	using	it.	The	new	device	will	act	similar	to	the
SR	latch	while	eliminating	its	undeterminate	state.	We	call	this	device	the	JK
flip-flop.	The	circuit	diagram	of	the	JK	flip-flop	constructed	by	a	D	flip-flop	is
shown	in	Fig.	9.14.

FIGURE	9.14	Circuit	diagram	of	JK	flip-flop.

The	characteristic	table	of	the	JK	flip-flop	is	presented	in	Table	9.5.	As	can	be
seen	in	this	table,	the	JK	flip-flop	acts	similar	to	the	SR	latch.	However,	there	is

no	undetermined	output	here.	We	can	assume	the	j	input	as	set,	the	k	input	as
reset.	As	in	the	D	flip-flop,	the	output	at	the	next	clock	cycle	is	represented	by
q[n	+	1].	The	output	at	the	present	clock	cycle	is	represented	by	q[n].	When	both
j	and	k	inputs	are	at	logic	level	1,	the	output	of	the	JK	flip-flop	toggles.

9.2.3	T	Flip-Flop
We	can	obtain	a	specific	structure	called	a	T	(toggle)	flip-flop	by	connecting

input	pins	of	a	JK	flip-flop.	Although	this	new	structure	may	seem	redundant,	it
will	be	of	great	use	in	counters	to	be	introduced	in	Sec.	10.4.	The	characteristic
table	of	the	T	flip-flop	is	presented	in	Table	9.6.	As	can	be	seen	in	this	table,	the
T	flip-flop	is,	in	fact,	a	limited	version	of	a	JK	flip-flop	such	that	it	either	gets
input	of	logic	level	0	or	1.	When	the	input	is	at	logic	level	0,	the	output	of	the
flip-flop	does	not	change.	When	the	input	is	at	logic	level	1,	the	output	of	the
flip-flop	toggles.

TABLE	9.6	Characteristic	Table	of	T
Flip-Flop

Listing	9.7	Verilog	Description	of	D	Flip-Flop

9.2.4	Flip-Flops	in	Verilog
Flip-flops	introduced	in	the	previous	section	can	be	described	in	Verilog.

Behavioral	modeling	is	the	most	suitable	form	to	describe	a	flip-flop	since	it
operates	on	clock	cycles.	Let’s	start	with	the	D	flip-flop.

9.2.4.1	D	Flip-Flop
The	D	flip-flop	can	be	described	by	using	behavioral	modeling	as	in	Listing

9.7.	In	this	description,	inputs	of	the	flip-flop	are	d	(data),	clk	(clock),	and	clr
(clear).	The	data	input	is	for	a	bit	value	to	be	saved	in	the	flip-flop.	The	clock
input	is	for	the	clock-based	operation.	The	clear	input	resets	the	flip-flop	output
independent	of	its	input.	Outputs	of	the	flip-flop	are	denoted	by	q	and	qn	in	the
description.	The	flip-flop	is	reset	when	a	negative	edge	of	the	clear	signal	comes.
This	is	achieved	by	the	Verilog	keyword	negedge.	The	flip-flop	operates
whenever	a	positive	edge	of	the	clock	signal	comes.	Again,	this	is	achieved	by
the	Verilog	keyword	posedge.	As	a	result,	the	sensitivity	list	in	behavioral
modeling	becomes	posedge	clk,	negedge	clr.
We	provide	the	RTL	schematic	of	a	D	flip-flop	in	Fig.	9.15.	As	can	be	seen	in

this	figure,	the	RTL	schematic	consists	of	two	D	flip-flops	(one	for	each	output).
In	fact,	if	we	had	only	one	output	as	q,	then	the	RTL	schematic	would	consist	of
one	D	flip-flop.	We	will	see	in	Sec.	9.8	why	this	is	the	case.	The	synthesization
result	of	the	D	flip-flop	description	will	be	as	in	Fig.	9.16.	As	can	be	seen	in	this

figure,	two	one-input	LUTs	and	D	flip-flops	are	used	in	implementation.	We	will
analyze	this	implementation	in	detail	in	Sec.	9.8.

FIGURE	9.15	RTL	schematic	of	D	flip-flop.

FIGURE	9.16	Synthesization	result	of	D	flip-flop.

9.2.4.2	JK	Flip-Flop
We	next	provide	the	Verilog	description	of	a	JK	flip-flop	in	Listing	9.8.	In	this

description,	inputs	are	represented	as	j	(set),	k	(reset),	clr	(clear),	and	clk
(clock).	Outputs	of	the	flip-flop	are	denoted	by	q	and	qn	in	the	description.	The
working	principles	of	a	JK	flip-flop	are	similar	to	those	of	a	D	flip-flop.	The
only	difference	is	that	the	JK	flip-flop	has	two	inputs	to	set	and	reset	output.
Vivado	synthesizes	the	JK	flip-flop	description	as	in	Fig.	9.17.	As	can	be	seen

in	this	figure,	four	LUTs	and	two	D	flip-flops	are	used	in	implementation.	This

is	in	line	with	the	circuit	diagram	of	the	JK	flip-flop	constructed	from	the	D	flip-
flop	in	Fig.	9.14.	In	other	words,	the	JK	flip-flop	is	implemented	by	D	flip-flops
in	Vivado.	We	will	analyze	this	implementation	in	detail	in	Sec.	9.8.

FIGURE	9.17	Synthesization	result	of	JK	flip-flop.

9.2.4.3	T	Flip-Flop
We	finally	provide	the	Verilog	description	of	a	T	flip-flop	in	Listing	9.9.	In

this	description,	inputs	are	represented	as	t	(toggle),	clr	(clear),	and	clk	(clock).
Outputs	of	the	flip-flop	are	denoted	by	q	and	qn	in	the	description.	As	explained
in	Sec.	9.2.3,	a	T	flip-flop	is	a	special	type	of	a	JK	flip-flop.	Therefore,	the
reader	can	deduce	the	working	principles	of	a	T	flip-flop	by	referring	to	a	JK
flip-flop.
Vivado	synthesizes	the	T	flip-flop	description	in	Verilog	as	in	Fig.	9.18.

Similar	to	the	synthesis	result	of	the	JK	flip-flop	in	Fig.	9.17,	three	LUTs	and
two	D	flip-flops	are	used	in	implementation.	This	is	expected	since	the	T	flip-
flop	is	a	special	case	of	a	JK	flip-flop.

FIGURE	9.18	Synthesization	result	of	T	flip-flop	in	behavioral	model.

Listing	9.8	Verilog	Description	of	JK	Flip-Flop

Listing	9.9	Verilog	Description	of	T	Flip-Flop

Listing	9.10	VHDL	Description	of	D	Flip-Flop

9.2.5	Flip-Flops	in	VHDL
We	next	provide	the	VHDL	description	of	D,	JK,	and	T	flip-flops.	As	in	the

previous	section,	we	consider	behavioral	modeling	here.	We	did	not	provide	the
RTL	schematic	and	synthesization	results	in	this	section	since	these	will	be
almost	the	same	as	in	Sec.	9.2.4.	However,	the	reader	can	observe	them	in
Vivado	if	needed.

9.2.5.1	D	Flip-Flop
We	provide	the	VHDL	description	of	a	D	flip-flop	in	Listing	9.10.	As	in	the

corresponding	Verilog	description,	the	inputs	of	the	flip-flop	are	d	(data),	clk
(clock),	and	clr	(clear).	The	data	input	is	for	the	bit	value	to	be	saved	in	flip-
flop.	The	clock	input	is	for	clock-based	operation.	The	clear	input	resets	the	flip-
flop	output	independent	of	its	input.	The	outputs	of	the	flip-flop	are	denoted	by	q
and	qn	in	the	description.	The	sensitivity	list	of	the	process	in	behavioral
modeling	contains	only	the	clock	signal.	The	flip-flop	is	reset	when	a	clear
signal	comes	and	the	clock	is	at	logic	level	1.	The	flip-flop	operates	whenever

the	rising	edge	of	the	clock	signal	comes.	This	is	achieved	by	the	VHDL
keyword	rising_edge.	If	the	falling	edge	of	the	clock	was	required	as	the
triggering	signal,	then	the	corresponding	VHDL	keyword	would	be
falling_edge.

Listing	9.11	VHDL	Description	of	JK	Flip-Flop

9.2.5.2	JK	Flip-Flop
We	next	provide	the	VHDL	description	of	a	JK	flip-flop	in	Listing	9.11.	In

this	description,	inputs	are	represented	as	j	(set),	k	(reset),	clr	(clear),	and	clk
(clock).	Outputs	of	the	flip-flop	are	denoted	by	q	and	qn	in	the	description.	The
working	principles	of	the	JK	flip-flop	are	similar	to	those	of	a	D	flip-flop.	The
only	difference	is	that	the	JK	flip-flop	has	two	inputs	to	set	and	reset	output.

9.2.5.3	T	Flip-Flop
We	finally	provide	the	VHDL	description	of	a	T	flip-flop	in	Listing	9.12.	In

this	description,	inputs	are	represented	as	t	(toggle),	clr	(clear),	and	clk	(clock).
Outputs	of	the	flip-flop	are	denoted	by	q	and	qn	in	the	description.	As	explained
in	Sec.	9.2.3,	the	T	flip-flop	is	a	special	type	of	a	JK	flip-flop.	Therefore,	the
reader	can	deduce	the	working	principles	of	the	T	flip-flop	by	referring	to	the	JK
flip-flop.

Listing	9.12	VHDL	Description	of	T	Flip-Flop

9.3	Register

A	register	is	an	N-bit	data	storage	element	constructed	by	N	flip-flops.	In
forming	a	register,	flip-flops	are	connected	in	parallel	in	such	a	way	that	data	can
be	processed	all	at	once.	We	provide	the	block	diagram	of	a	four-bit	register
constructed	by	four	D	flip-flops	in	Fig.	9.19.	As	can	be	seen	in	this	figure,	flip-
flops	share	the	same	clock.	Besides,	the	input	to	each	flip-flop	is	independent	of
the	other.	Hence,	four	bits	can	be	stored	to	the	register	in	a	parallel	manner.	In
the	same	way,	the	output	of	each	flip-flop	is	independent	of	the	other.	Therefore,
stored	N-bit	data	can	be	observed	in	a	parallel	manner.	The	symbol	of	a	four-bit
register	is	provided	in	Fig.	9.20.

FIGURE	9.19	Block	diagram	of	four-bit	register.

FIGURE	9.20	Symbol	of	four-bit	register.

9.4	Memory
The	memory	is	a	data	storage	element	constructed	by	registers.	Within

memory,	a	specific	register	should	be	reached.	This	is	achieved	by	its	address.
More	generally,	the	wires	holding	the	address	data	are	called	address	bus.	We
should	be	able	to	write	or	read	the	data	from	a	specific	register.	The	wires	used
for	this	operation	are	called	data	bus.	We	provide	a	sample	memory
implementation	by	using	two	four-bit	registers	in	Fig.	9.21.	As	can	be	seen	in
this	figure,	the	data	input	to	two	separate	registers	are	done	in	parallel.	An	input
register	is	selected	by	a	one-to-two	encoder	in	such	a	way	that	the	selected
register	gets	the	clock	signal.	The	other	register	not	receive	the	clock.	Hence,	it
will	be	disabled.	The	data	output	from	registers	are	selected	by	multiplexers.
Both	data	input	and	output	locations	are	selected	by	the	address	bit.	Although
this	is	a	simple	setup,	it	shows	how	the	memory	works.

FIGURE	9.21	Circuit	diagram	of	2	×	4	bit	memory.

9.5	Read-Only	Memory
The	stored	data	may	be	taken	as	static	during	operation	of	a	digital	system.	In

other	words,	the	data	in	a	specific	memory	location	should	not	be	altered	within
the	system.	Such	a	location	is	called	read-only	memory	(ROM).	We	can
represent	ROM	both	in	Verilog	and	VHDL.

9.5.1	ROM	in	Verilog
We	provide	the	Verilog	description	of	a	4×8	bit	ROM	in	Listing	9.13.	One

can	think	of	this	module	as	composed	of	four	registers	each	holding	eight	bits.
The	input	of	the	module	is	address.	The	output	of	the	module	is	data.	The	ROM
content	can	be	loaded	either	in	a	binary	or	a	hexadecimal	form.	To	use	the	binary
form,	the	command	$readmemb	should	be	used.	Entries	of	the	ROM	are	saved	in
the	text	file	ROM_entries_bin.txt	for	this	case.	To	use	the	hexadecimal	form,
the	command	$readmemh	should	be	used.	Here,	entries	of	the	ROM	are	saved	in
the	text	file	ROM_entries_hex.txt	for	this	case.

Listing	9.13	Verilog	Description	of	4	×	8	bit	ROM	Module

9.5.2	ROM	in	VHDL
We	provide	the	VHDL	description	of	a	4	×	8	bit	ROM	in	Listing	9.14.	This

module	has	the	same	naming	convention	as	the	corresponding	Verilog
description.	The	ROM	content	is	loaded	from	the	text	file	ROM_entries_hex.txt
similar	to	the	application	in	Sec.	5.4.	The	only	difference	is	using	the	for
keyword	and	to_integer	implicit	function.	The	for	keyword	is	used	to	form	a
loop.	The	to_integer	function	converts	a	given	value	to	an	integer	form.
Besides,	the	file	reading	operation	is	the	same.

9.5.3	ROM	Formation	Using	IP	Blocks
Xilinx	offers	IP	blocks	for	memory	construction,	with	two	options:	distributed

and	block	memory	formation.	Distributed	memory	is	composed	of	LUTs.	In	fact,
the	ROM	descriptions	in	the	previous	section	are	good	examples	of	distributed
memory	formation.	Block	memory	uses	the	FPGA	parts	dedicated	for	this
operation	as	explained	in	Chap.	2.
Let’s	start	with	distributed	ROM	generation	using	IP.	Here,	we	will	explain

the	concept	using	the	Verilog	description.	The	same	idea	applies	to	the	VHDL
description	as	well.	Assume	that	a	Vivado	project	is	opened	as	explained	in
Chap.	4.	We	can	add	the	distributed	ROM	by	selecting	it	under	IP	catalog
following	Memories	&	Storage	Elements	→	RAMs	&	ROMs	→	Distributed
Memory	Generator.	Then	the	customized	IP	window	appears.	In	this	window,

the	user	can	configure	the	memory	element	at	hand.	Since	we	plan	to	generate
the	distributed	ROM,	we	should	apply	the	following	steps.	First,	we	should	set
the	depth	and	data	width	of	the	memory	block	in	the	“memory	config”	tab.
Assume	that	we	need	a	16-element	ROM,	each	element	with	eight	bits.	Hence,
the	depth	will	be	16	and	data	width	will	be	eight.	Next,	we	should	select	the
memory	type.	Here,	we	will	select	the	ROM.	We	can	set	input	and	output	port
properties	in	the	“port	config”	tab.	Finally,	we	can	add	an	initialization	file	from
the	“RS	&	initialization”	tab.	We	can	add	the	text	file	ROM_entries_hex.txt
here	with	little	modification.	The	IP	accepts	files	in	coe	format	which	is	easy	to
construct	[30].	The	modified	file	(to	be	added)	will	be	ROM_entries_hex.coe.
As	we	add	the	modified	IP	block	to	the	project,	we	can	form	a	top	module	as	in
Listing	9.15.	Afterward,	we	can	reach	a	specific	ROM	content	by	providing	its
address.	For	more	information	on	the	distributed	ROM,	please	see	[30].

Listing	9.14	VHDL	Description	of	4	×	8	bit	ROM	Module

We	can	also	use	the	block	memory	IP	to	construct	a	ROM	module.	As	in	the
distributed	ROM	formation	example,	we	will	only	handle	the	Verilog
description	here.	Assume	that	a	Vivado	project	is	opened	as	explained	in	Chap.
4.	We	can	add	a	block	ROM	by	selecting	it	under	the	IP	catalog	following
Memories	&	Storage	Elements	→	RAMs	&	ROMs	&	BRAMs	→	Block
Memory	Generator.	Then,	customized	IP	window	appears.	In	this	window,	the
user	can	configure	the	memory	element	at	hand.	Since	we	plan	to	generate	a
block	ROM,	we	should	apply	the	following	steps.	First,	we	should	set	the
interface	type	as	“Native”	and	the	memory	type	as	“Single	Port	ROM”	from	the
“Basic”	tab.	Then,	we	should	switch	to	the	“Port	A	Options”	tab	and	set	the
“Port	A	Width”	and	“Port	A	Depth.”	Assume	that	we	need	a	16-element	ROM,
each	element	with	eight	bits.	Hence,	the	width	will	be	eight	and	depth	will	be	16.
Finally,	we	can	add	an	initialization	file	from	the	“Other	Options”	tab.	We	can
add	the	file	ROM_entries_hex.coe	here.	As	we	add	the	modified	IP	block	to	the
project,	we	can	form	a	top	module	as	in	Listing	9.16.	Afterward,	we	can	reach	a
specific	ROM	content	by	providing	its	address.	For	more	information	on	block
ROM,	please	see	[31].

Listing	9.15	Verilog	Description	of	Distributed	ROM	Using	IP

Listing	9.16	Verilog	Description	of	Block	ROM	Using	IP

9.6	Random	Access	Memory
The	stored	data	may	be	taken	as	dynamic	during	operation	of	a	digital	system.

In	other	words,	the	data	in	a	specific	memory	location	can	be	altered	within	the
system.	Such	a	location	is	called	random	access	memory	(RAM).	We	can
represent	the	RAM	both	in	Verilog	and	VHDL	by	modifying	ROM	descriptions
in	Sec.	9.5.	The	only	difference	will	be	adding	a	data	write	option	to
descriptions.	Instead,	we	will	directly	use	IP	blocks	introduced	in	the	previous
section	to	construct	the	RAM.
Let’s	start	with	the	distributed	RAM	generation	using	IP.	We	will	follow	the

steps	in	forming	the	distributed	ROM	in	the	previous	section.	Different	from
there,	we	should	select	the	memory	type	as	“Single	Port	RAM.”	In	the	“Port
Config”	tab,	we	can	also	set	output	options	as	“registered.”	We	can	add	the
initial	RAM	content	by	including	the	file	RAM_entries_hex.coe.	As	we	add	the
modified	IP	block	to	the	project,	we	can	form	a	top	module	as	in	Listing	9.17.
The	top	module	writes	numbers	to	specific	memory	locations	when	the	write
enable	value	is	at	logic	level	1.	When	this	value	goes	to	logic	level	0,	the	user
can	read	a	specific	memory	location.	For	more	information	on	the	distributed
RAM,	please	see	[30].

Listing	9.17	Verilog	Description	of	Distributed	RAM	Using	IP

We	can	modify	the	distributed	RAM	application	by	using	the	block	RAM.
Here,	we	will	follow	the	steps	in	forming	the	block	ROM	in	the	previous	section.
Different	from	there,	we	should	set	the	memory	type	as	“Single	Port	RAM”	from
the	“Basic”	tab.	Then,	we	should	switch	to	“Port	A	Options”	tab	and	set	the
Memory	Size	as	“Write	Width”	to	eight	bits,	“Read	Width”	to	eight	bits,	and
“Write	Depth”	to	16	bits.	“Read	Depth”	will	be	set	automatically	based	on	this
value.	As	we	add	the	modified	IP	block	to	the	project,	we	can	form	a	top	module
as	in	Listing	9.18.	Similar	to	Listing	9.17,	the	top	module	writes	numbers	to
specific	memory	locations	when	the	write	enable	value	is	at	logic	level	1.	When
this	value	goes	to	logic	level	0,	the	user	can	read	a	specific	memory	location.	For
more	information	on	block	RAM,	please	see	[31].

9.7	Application	on	Data	Storage	Elements
We	can	improve	the	calculator	by	adding	memory	to	it.	We	provide	the	top

module	for	the	improved	calculator	in	Listing	9.19.	Here,	the	calculator	IP	is
represented	as	calculator_0.	To	keep	the	result	of	an	operation	in	memory,	the

user	should	press	btnC	button	on	the	Basys3	board.	If	the	user	wants	to	add	a
number	to	the	one	in	memory,	he	or	she	should	press	btnL	button	on	the	Basys3
board.	If	subtraction	is	required,	then	the	user	should	press	btnR	button	on	the
Basys3	board.	If	the	user	wants	to	turn	back	to	normal	operation	(without	using
the	value	in	memory)	then	he	or	she	should	press	btnD	button	on	the	Basys3
board.

Listing	9.18	Verilog	Description	of	Block	RAM	Using	IP

Since	buttons	are	used	in	all	operations,	we	should	eliminate	their	malfunction
known	as	“debouncing.”	This	problem	occurs	when	physical	properties	of	the
button	result	in	more	than	one	button	press	effect	when	it	is	actually	pressed
once.	There	are	two	ways	to	eliminate	debouncing.	One	is	using	the	physical
resistor	and	capacitor	circuitry	[32].	Although	this	is	a	good	solution,	we	should
avoid	adding	discrete	circuit	elements	at	this	step.	Therefore,	the	second	solution
is	adding	a	delay	element	to	the	button	press	port.	We	provide	the	Verilog
module	performing	this	operation	in	Listing	9.20.
In	Listing	9.20,	the	inputs	to	the	debounce	module	are	btn	(representing

button	press)	and	clk	(representing	clock	signal).	The	output	of	the	module	is
btn_clr	which	indicates	the	button	press	signal	without	any	(possible)
debouncing	effect.	The	module	works	as	follows.	The	delay	parameter	is	set	as
650000.	Assume	that	we	feed	the	Basys3	clock	with	a	frequency	100	MHz	that
corresponds	to	10-ns	clock	period.	Hence,	the	delay	parameter	corresponds	to
6.5-ms	time	duration.	The	module	provides	clean	button	press	output	if	it	stays
unchanged	in	this	time	interval.

9.8	FPGA	Building	Blocks	Used	in	Data	Storage
Elements
Data	storage	elements	require	different	FPGA	building	blocks	compared	to

the	ones	used	in	previous	chapters.	Let’s	start	with	the	FPGA	building	blocks
used	in	latch	implementation.	As	indicated	in	Sec.	9.1.3,	while	implementing	the
SR	latch	the	model	used	affects	the	FPGA	building	blocks	used.	To	be	more
specific,	the	dataflow	model	of	the	SR	latch	in	Listing	9.1	needs	two	LUTs	used
as	logic	elements.	Here,	the	data	storage	is	performed	by	a	feedback	loop	as	in
Fig.	9.6.	On	the	other	hand,	the	behavioral	model	of	the	SR	latch	requires	one
LUT	and	two	D	latches.	Therefore,	dataflow	and	behavioral	model
implementations	require	different	FPGA	building	blocks.	Moreover,	elements
used	in	implementing	behavioral	model	of	the	SR	latch	are	formed	of	D	latches.
This	may	seem	contradictory	since	we	need	D	latches	to	construct	the	SR	latch.
However,	the	reader	should	remember	that	there	are	only	D	latches	in	the	Artix-
7	XC7A35T	FPGA.	Therefore,	this	is	the	main	latch	structure	to	be	used	in
Vivado.	We	can	confirm	this	by	looking	at	Figs.	9.10	and	9.11.

Listing	9.19	Improved	Calculator	Implemented	on	the	Basys3	Board	in
Verilog

Listing	9.20	Verilog	Description	of	Debounce	Module

Next,	let’s	focus	on	the	flip-flop	implementation	details.	Again,	here	the	main
building	block	used	in	the	FPGA	implementation	is	the	D	flip-flop	independent
of	flip-flop	type	considered.	This	is	also	because	of	the	fact	that	there	are	only	D
flip-flops	in	the	Artix-7	XC7A35T	FPGA.	Therefore,	these	are	the	main	building
blocks	in	operation.	Let’s	focus	on	the	D,	JK,	and	T	flip-flop	implementation
details.	The	D	flip-flop	requires	two	LUTs	used	as	logic	elements,	two	slices,
and	one	LUT	flip-flop	pairs	in	implementation.	The	JK	flip-flop,	on	the	other
hand,	requires	four	LUTs	(two	being	used	as	logic	elements),	two	slices,	and	one
LUT	flip-flop	pairs	in	implementation.	Finally,	the	T	flip-flop	requires	three
LUTs	used	as	logic	elements,	two	slices,	and	two	LUT	flip-flop	pairs	in
implementation.
Since	a	register	is	composed	of	flip-flops,	it	is	implemented	in	a	similar	way.

The	distributed	ROM	and	RAM	will	also	be	based	on	flip-flop	and	LUTs.
However,	as	the	name	implies	the	block	ROM	and	RAM	is	specifically	based	on
the	block	RAM	in	the	FPGA	as	explained	in	Chap.	2.	The	reader	can	check	this
property	while	implementing	these	elements	in	Secs.	9.5	and	9.6.	There,	the

block	RAM	is	used	to	construct	memory	elements.
We	can	summarize	the	fundamental	results	while	implementing	data	storage

elements	in	the	FPGA	as	follows.	Since	D	latches	and	flip-flops	reside	in	CLBs
in	the	FPGA,	basically	they	are	used	in	implementation.	The	distributed	ROM
and	RAM	is	also	constructed	in	the	same	way.	The	block	ROM	and	RAM	will
be	based	on	specific	FPGA	blocks	for	implementation.	Besides,	interconnect
resources	and	input/output	blocks	are	also	needed	while	implementing	data
storage	elements,	as	considered	in	this	chapter.
We	should	warn	the	reader	about	one	important	implementation	detail	of

latches	and	flip-flops.	The	provided	Verilog	and	VHDL	descriptions	work
without	any	problem	in	the	simulation	level.	However,	they	may	not	work	as
expected	(or	the	corresponding	bitstream	cannot	be	generated)	when
implemented	on	the	Basys3	or	Arty	board.	The	reason	for	this	shortcoming	is	as
follows.	Vivado	specifically	asks	for	any	sensitivity	list	entry	labeled	by
posedge	or	nededge	to	be	a	clock	signal.	If	this	is	not	satisfied,	then	a	bitstream
cannot	be	generated.	To	overcome	this	problem,	an	edge	detector	circuit	should
be	used	in	the	description.	We	provide	such	an	edge	detector	for	Verilog	in
Listing	10.33.

9.9	Summary
Data	storage	is	a	necessary	property	for	most	digital	systems.	A	latch	can	be

taken	as	the	basic	data	storage	element	to	be	used	for	this	purpose.	However,	its
usage	in	an	actual	FPGA	implementation	is	not	desired	since	a	latch	lacks	a
synchronization	signal.	On	the	other	hand,	flip-flops	can	be	constructed	by	using
latches.	Therefore,	exploring	the	latch	structure	was	necessary.	We	will	be	using
flip-flops	extensively	in	constructing	sequential	circuits.	The	specific	type	to	be
used	in	implementation	will	be	the	D	flip-flop	because	of	its	availability	in	the
Artix-7	XC7A35T	FPGA.	Therefore,	the	reader	should	understand	its	working
principles.	D	flip-flops	lead	to	registers	and	they	lead	to	memory	blocks.	If	the
block	data	is	to	be	saved	in	an	FPGA,	these	should	be	used	in	implementation.

9.10	Exercises
9.1			Construct	the	SR	latch	in	Sec.	9.1.1	using	NAND	gates.
9.2			Describe	the	SR	latch	with	control	input	in	Verilog	using

a.	structural	modeling.
b.	dataflow	modeling.

9.3			Describe	the	D	latch	with	control	input	in	Verilog	using
a.	structural	modeling.

a.	structural	modeling.
b.	dataflow	modeling.

9.4			Describe	the	SR	latch	with	control	input	in	VHDL	using	dataflow
modeling.
9.5			Describe	the	D	latch	with	control	input	in	VHDL	using	dataflow
modeling.
9.6			Obtain	the	RTL	schematic	of	SR	and	D	latches	in	Sec.	9.1.4.	Compare
the	obtained	results	with	the	ones	in	Sec.	9.1.3.
9.7			How	would	the	FPGA	building	block	usage	change	if	only	the	q
output	of	the	D	flip-flop	is	required?
9.8			Use	a	button	and	a	LED	on	the	Basys3	(or	Arty)	board	such	that	when
the	button	is	pressed	once,	the	LED	turns	on.	When	it	is	pressed	twice,	the
LED	turns	off.	Use	a	suitable	flip-flop	description	for	this	operation	in
Verilog	or	VHDL.

CHAPTER	10

Sequential	Circuits

Flip-flops	introduced	in	the	previous	chapter	allow	us	to	design	sequential
circuits.	The	common	characteristic	of	these	circuits	is	that	they	have	memory.
Hence,	their	behavior	depend	not	only	on	the	current	input	but	also	on	the	past
input	and	output.	Flip-flops	serve	as	memory	elements	for	this	purpose.	In	this
chapter,	we	will	extensively	use	the	D	flip-flop	since	it	is	available	in	the	Artix-7
XC7A35T	FPGA.	To	understand	sequential	circuits,	we	will	start	with	their
analysis.	This	will	be	different	from	combinational	circuit	analysis	due	to
memory	elements	in	the	sequential	circuit.	Therefore,	we	will	introduce	new
methods	specific	for	this	purpose.	Then,	we	will	explore	the	timing	concept	in
sequential	circuits.	Afterward,	we	will	explain	working	principles	of	two
sequential	circuit	families	used	extensively.	These	are	shift	registers	and
counters.	As	in	combinational	circuits,	we	will	review	the	basic	design
methodology	for	sequential	circuits	by	adding	extra	tools.	Finally,	we	will	focus
on	how	sequential	circuits	can	be	implemented	on	the	field-programmable	gate
array	(FPGA).

10.1	Sequential	Circuit	Analysis
We	can	analyze	characteristics	of	a	sequential	circuit	in	three	different	ways

using	state	equation,	state	table,	and	state	diagram.	This	section	is	on	these
concepts.	Let’s	first	start	with	defining	what	a	state	is.

10.1.1	Definition	of	State
A	flip-flop	can	store	one	bit	of	data	as	either	logic	level	0	or	1.	Therefore,	we

can	say	that	it	can	be	in	one	of	two	states.	If	a	sequential	circuit	has	N	flip-flops,
then	it	can	store	N	bits	of	data	having	one	of	2N	combinations.	In	other	words,
the	sequential	circuit	can	be	in	one	of	2N	states.	Since	there	are	finite	number	of
states	the	sequential	circuit	can	be	in,	it	is	also	called	a	finite	state	machine.

Throughout	the	book,	we	will	use	both	names	interchangeably.

10.1.2	State	and	Output	Equations
A	sequential	circuit	changes	its	state	by	an	input	signal	and/or	clock	fed	to	it.

Hence,	we	can	characterize	the	sequential	circuit	using	its	state	transitions
described	by	state	equations.	The	aim	here	is	representing	the	next	state	using
the	present	state	and	input	values.	To	represent	the	output	of	a	sequential	circuit,
we	can	use	two	different	models	as	Mealy	and	Moore.	In	Mealy	model,	the
output	is	a	function	of	both	present	state	and	input.	In	Moore	model,	the	output
is	a	function	of	the	present	state	only.	For	more	information	on	Mealy	and
Moore	models,	please	see	[26,33].
Let’s	take	the	sequential	circuit	in	Fig.	10.1	as	an	example	and	form	its	state

and	output	equations.	As	can	be	seen	in	this	figure,	the	sequential	circuit
contains	two	D	flip-flops	and	logic	gates.	Let’s	call	the	first	and	second	flip-
flops	as	q1	and	q2,	respectively.	Based	on	these,	possible	state	values	in	the
circuit	will	be	as	{q2q1}	∈	{00,01,10,11}.

FIGURE	10.1	Circuit	diagram	of	the	sample	sequential	circuit.

By	analyzing	the	circuit	diagram	in	Fig.	10.1,	we	can	form	state	and	output
equations	of	the	corresponding	sequential	circuit.	The	output	of	a	D	flip-flop	can
be	taken	as	its	present	state.	This	can	be	represented	as	q[n]	where	n	indicates
the	present	clock	cycle.	Therefore,	we	will	have	present	state	values	as	q1[n]	and
q2[n]	in	the	sequential	circuit.	The	input	of	a	D	flip-flop	can	be	taken	as	its	next
state	since	it	will	be	fed	to	the	output	by	the	next	clock	cycle.	Hence,	q1[n	+	1]

and	q2[n	+	1]	will	be	taken	as	next	state	values	where	n	+	1	indicates	the	next
clock	cycle.	These	definitions	lead	to	state	and	output	equations.	Here,	we	will
take	next	states	and	the	output	separately	as	if	they	are	simple	combinational
circuits.	Using	techniques	introduced	in	Chap.	7,	we	can	form	state	and	output
equations	for	the	sequential	circuit	in	Fig.	10.1	as	follows:

10.1.3	State	Table
The	state	(characteristic)	table	of	a	sequential	circuit	is	similar	to	the	truth

table	of	a	combinational	circuit.	However,	the	state	table	holds	all	input	and
present	state	combinations	at	its	first	section.	The	second	section	of	the	state
table	holds	both	output	and	next	state	values.
We	can	form	the	state	table	of	the	sequential	circuit	in	Fig.	10.1	by	using	its

state	and	output	equations.	Using	these,	the	state	table	can	be	constructed	as
presented	in	Table	10.1.	This	table	summarizes	characteristics	of	the	sequential
circuit.	By	looking	at	it,	we	can	know	what	the	next	state	and	output	will	be
based	on	the	present	state	and	input	values.

TABLE	10.1	State	Table	of	the
Example	Sequential	Circuit

10.1.4	State	Diagram
Although	the	state	table	characterizes	a	sequential	circuit,	it	may	not	be

descriptive	enough.	Therefore,	the	third	method	to	describe	the	sequential	circuit
is	using	a	state	diagram	composed	of	circles	and	directed	arcs.	Each	circle
represents	a	state.	A	directed	arc	represents	the	transition	between	states.	The
directed	arc	also	holds	the	required	input	value	for	transition	to	occur.	However,
transition	timings	are	not	explicitly	shown	in	the	state	diagram.
If	the	sequential	circuit	is	of	the	Mealy	type,	the	directed	arc	holds	what	the

corresponding	output	will	be	after	the	state	transition.	Let’s	provide	part	of	a
generic	state	diagram	(for	the	Mealy	model)	in	Fig.	10.2.	As	can	be	seen	in	this
figure,	the	directed	arc	holds	information	on	what	the	input	value	should	be	for
transition	to	the	next	state	to	occur.	The	directed	arc	also	holds	information	on
the	output	value	after	this	transition.

FIGURE	10.2	Part	of	a	generic	state	diagram	for	Mealy	model.

The	state	diagram	based	on	the	Moore	model	requires	outputs	to	be	defined
along	with	states.	Therefore,	directed	arcs	will	have	only	input	values.	Next,	we
provide	part	of	a	generic	state	diagram	for	the	Moore	model	in	Fig.	10.3.	As	can
be	seen	in	this	figure,	the	directed	arc	only	contains	the	input	value	required	for
transition.	The	circle	representing	the	state	also	holds	the	corresponding	output
value.

FIGURE	10.3	Part	of	a	generic	state	diagram	for	Moore	model.

Let’s	turn	back	to	the	sequential	circuit	characterized	by	its	state	table	in	Table
10.1.	The	output	equation	of	the	circuit	clearly	indicates	that	this	is	a	Mealy
model.	Besides,	there	are	four	states	based	on	two	flip-flops	in	the	circuit.

Hence,	there	will	be	four	circles	in	the	state	diagram.	Since	there	is	one	input
and	output	in	the	sequential	circuit,	its	state	diagram	will	be	as	presented	in	Fig.
10.4.

FIGURE	10.4	State	diagram	of	the	example	sequential	circuit.

The	state	diagram	in	Fig.	10.4	can	be	read	as	follows.	There	are	four	states
labeled	as	00,	01,	10,	and	11.	Directed	arcs	have	labels	such	as	1/0.	Here,	the
number	before	the	slash	represents	input.	The	number	after	the	slash	represents
the	output.	As	an	example,	the	directed	arc	between	states	00	and	01	is	labeled
as	1/0.	This	indicates	that	when	the	system	is	at	state	00	and	an	input	with	logic
level	1	comes,	the	system	goes	to	state	01	while	producing	the	output	0.	In	a
similar	manner,	when	the	system	is	at	state	00	and	an	input	with	logic	level	0
comes,	the	system	stays	at	the	same	state	while	producing	output	0.
We	should	mention	what	the	initial	state	of	the	sequential	circuit	should	be.

We	implicitly	assumed	that	the	circuit	under	consideration	starts	its	operation
with	state	00.	In	other	words,	both	flip-flops	were	reset	when	the	first	input
comes.	This	setup	can	be	taken	as	default	unless	a	specific	state	is	taken	as	the
initial	state.
We	are	in	a	position	to	judge	what	the	sequential	circuit	in	Fig.	10.4	does.

Here,	the	most	helpful	representation	is	its	state	diagram.	Based	on	it,	we	can
decide	that	the	sequential	circuit	gives	output	of	logic	level	1	only	when	a
sequence	of	inputs	with	pattern	1101	comes.	Hence,	this	device	is	a	sequence

detector.	Such	devices	are	helpful	in	detecting	specific	patterns	in	a	sequence.

10.1.5	State	Representation	in	Verilog
We	can	represent	the	sequence	detector	in	Fig.	10.1	in	Verilog.	The	first

method	in	describing	it	is	using	state	and	output	equations.	We	provide	Verilog
description	of	the	sequence	detector	using	these	in	Listing	10.1.
Instead	of	representing	the	sequence	detector	as	presented	in	Listing	10.1,	we

can	take	the	advantage	of	the	behavioral	modeling	in	Verilog.	The	aim	here	is
having	a	more	descriptive	representation	of	the	device.	Moreover,	Verilog
allows	us	to	represent	states	in	parametric	form.	This	makes	the	description	more
readable.	Let’s	apply	this	idea	to	the	sequence	detector	by	representing	state
values	{00,	01,	10,	11}	in	the	device	as	{A,	B,	C,	D},	respectively.	Based	on
this	representation,	we	will	have	the	new	state	diagram	as	shown	in	Fig.	10.5.

FIGURE	10.5	State	diagram	of	the	sequence	detector	using	parametric	form.

Listing	10.1	Verilog	Description	of	the	Sequence	Detector

Based	on	the	state	diagram	in	Fig.	10.5,	we	can	reconstruct	the	Verilog
description	of	the	sequence	detector.	Here,	we	will	represent	states	as	A,	B,	C,
and	D.	Besides,	we	will	have	the	actual	behavioral	description	such	that	state
transitions	are	done	by	case	statements.	The	final	Verilog	description	of	the
sequence	detector	will	be	as	presented	Listing	10.2.	This	description	allows	us	to
analyze	working	principles	of	the	sequential	circuit	easily.	Therefore,	we	will
represent	sequential	circuits	this	way	whenever	possible	from	this	point	on.

Listing	10.2	Verilog	Description	of	the	Sequence	Detector	in	Behavioral
Form

Vivado	synthesizes	the	sequence	detector	description	in	Listing	10.2	as
presented	in	Fig.	10.6.	Here,	four	LUTs	and	three	D	flip-flops	are	used	in
implementation.	We	will	analyze	this	implementation	in	detail	in	Sec.	10.7.

FIGURE	10.6	Synthesization	result	of	the	sequence	detector	in	behavioral	model.

10.1.6	State	Representation	in	VHDL
The	sequence	detector	in	Fig.	10.1	can	also	be	described	in	VHDL.	As	in	the

Verilog	description	in	Listing	10.1,	the	first	method	is	using	state	and	output
equations	in	describing	the	sequence	detector.	We	provide	the	VHDL
description	of	the	sequence	detector	formed	this	way	in	Listing	10.3.
The	second	method	in	describing	the	sequence	detector	is	using	the	power	of

behavioral	modeling.	VHDL	provides	an	extra	advantage	compared	to	Verilog
such	that	states	in	the	device	can	be	represented	as	a	new	data	type	by	the	VHDL
keyword	type.	The	usage	of	this	keyword	will	be	as	type	state_type	is
(A,B,C,D).	This	usage	defines	a	new	data	type	called	state_type	which	can
take	four	values	as	A,B,C,D.	If	a	signal	with	the	name	state	is	to	be	defined	by
type	state_type,	this	can	be	done	by	signal	state	:	state_type.	We	provide
the	behavioral	model	of	the	sequence	detector	described	this	way	in	Listing	10.4.
Compared	to	the	description	in	Listing	10.3,	this	new	form	is	more	readable	and
explains	working	principles	of	the	sequence	detector	clearly.	Hence,	we	will	use
such	a	behavioral	description	whenever	possible	from	this	point	on.	The
synthesization	result	of	the	sequence	detector	description	in	Listing	10.4	will	be
similar	to	the	one	in	Fig.	10.6.	Therefore,	we	did	not	provide	it	here.

Listing	10.3	VHDL	Description	of	the	Sequence	Detector

Listing	10.4	VHDL	Description	of	the	Sequence	Detector	in	Behavioral
Model

10.2	Timing	in	Sequential	Circuits
Sequential	circuits	can	operate	in	two	different	modes	in	terms	of	timing.

These	are	synchronous	and	asynchronous	operations.	Let’s	start	with	the	former
one.

10.2.1	Synchronous	Operation
What	we	mean	by	synchronous	operation	is	as	follows.	All	transitions	within

the	sequential	circuit	are	done	in	clock	cycles.	In	other	words,	circuit	elements
share	a	common	clock	such	that	every	operation	is	synchronized	with	it.	The
reason	of	using	such	a	synchronization	signal	is	as	follows.	When	there	are	flip-
flops	in	the	circuit,	we	may	need	present	state	values	in	obtaining	next	state
values.	However,	these	operations	should	be	done	in	order.	Otherwise,	the	next
state	value	may	be	used	erroneously	instead	of	the	present	state	value.	Hence,
synchronization	is	necessary	within	the	circuit.	The	sequence	detector	introduced
in	Sec.	10.1	is	a	good	example	of	the	synchronous	sequential	circuit.	As	can	be
seen	in	Fig.	10.1,	there	are	two	D	flip-flops	in	the	device	sharing	the	same	clock
signal.	The	synchronization	in	the	circuit	is	accomplished	this	way.
One	method	to	perform	synchronous	operation	in	HDL	is	putting	all	state

transition	operations	in	the	same	block	which	is	evoked	by	a	change	in	clock
signal.	Let’s	focus	on	this	operation	in	Verilog	first.	In	Listing	10.2,	the
description	under	always	@	(posedge	clk)	is	responsible	for	state	transitions
and	output	formation.	The	posedge	keyword	indicates	that	the	always	block	is
executed	whenever	a	rising	edge	of	clock	comes.	Since	all	state	transitions	are
performed	in	the	always	block,	these	operations	are	synchronized	by	the	rising
edge	of	clock.	The	same	operation	can	be	achieved	by	the	falling	edge	of	clock.
Then,	the	keyword	for	this	operation	would	be	negedge.
The	synchronization	in	the	VHDL	description	can	be	performed	by	using	the

process	block	triggered	by	clock	signal.	In	the	VHDL	description	of	the
sequence	detector	given	in	Listing	10.4,	the	synchronization	is	done	by	putting
all	state	transitions	under	process(clk).	Different	from	Verilog,	VHDL	does
not	allow	adding	a	complex	constraint	to	trigger	the	process	block.	Hence,	it	is
triggered	first	by	a	change	in	clock	signal.	Then,	state	transitions	are	performed
by	the	required	transition	type	within	block.	For	the	sequence	detector,	this	was
the	rising	edge	of	the	clock	described	by	the	condition	rising_edge(clk)	within
the	if	condition.	To	perform	the	same	operation	in	the	falling	edge	of	clock
signal,	the	falling_edge(clk)	condition	should	have	been	used.

10.2.2	Asynchronous	Operation

There	are	also	asynchronous	sequential	circuits.	In	these,	there	is	no	common
clock	shared	by	all	sequential	circuit	elements.	Although	asynchronous
operations	may	be	beneficiary	for	some	applications,	such	circuits	are	not	easy
to	construct	and	analyze.
We	can	analyze	how	asynchronous	operation	can	be	achieved	in	HDL	using	a

basic	example.	Let’s	start	with	the	Verilog	description	in	Listing	10.5.	Here,
there	are	two	always	blocks.	The	first	one	is	triggered	by	the	positive	edge	of	the
clock	signal.	The	second	block	is	triggered	by	the	negative	edge	of	the	binary
variable	q	in	the	first	block.	In	other	words,	the	execution	of	the	second	block
depends	on	the	first	block,	not	on	the	clock	signal.	This	is	a	simple	example	of
asynchronous	operation	in	Verilog.
The	asynchronous	operation	in	Listing	10.5	can	also	be	performed	in	VHDL.

The	corresponding	description	will	be	in	Listing	10.6.	Here,	there	are	two
process	blocks	the	first	being	triggered	by	clock	signal.	Within	the	first	process
block,	a	signal	q	changes	its	state	in	each	rising	edge	of	clock.	This	change
triggers	the	second	process	block.	Hence,	the	second	block	is	not	triggered	by
clock	signal.	Therefore,	the	overall	operation	within	the	device	becomes
asynchronous.

10.3	Shift	Register	as	a	Sequential	Circuit
There	are	sequential	circuit	families	extensively	used	in	digital	systems.	One

such	family	is	the	shift	register	which	will	be	introduced	in	this	section.	The
register	introduced	in	Sec.	9.3	can	be	modified	such	that	bit	locations	can	be
altered	in	a	sequential	manner.	The	family	of	devices	performing	this	operation
is	called	shift	register.	There	are	four	shift	register	types:	serial	in/serial	out,
parallel	in/serial	out,	parallel	in/parallel	out,	and	serial	in/parallel	out.

Listing	10.5	Asynchronous	Operation	Example	in	Verilog

Listing	10.6	Asynchronous	Operation	Example	in	VHDL

In	the	serial	in/serial	out	shift	register,	data	is	fed	to	the	device	in	a	serial
manner.	The	output	is	also	received	in	serial	manner.	This	operation	is	especially
useful	when	a	sequence	of	bits	is	to	be	shifted	to	the	left	or	right.	The	block
diagram	of	the	four-bit	serial	in/serial	out	shift	register	is	as	presented	in	Fig.
10.7.	As	can	be	seen	in	this	figure,	the	shift	register	is	constructed	by	four	D	flip-
flops	connected	as	a	chain.	Hence,	the	output	of	one	flip-flop	is	connected	to	the
input	of	the	next	flip-flop.	New	data	bit	is	fed	to	the	device	through	its	x	pin.	At
each	clock	cycle,	bits	are	shifted	to	right	between	flip-flops.	Last	data	bit	is	fed
to	output	from	y	pin.
In	the	parallel	in/serial	out	shift	register,	data	is	fed	to	the	device	in	a	parallel

manner.	Hence,	data	is	fed	all	at	once.	Besides,	shifting	operation	is	the	same	as
in	serial	in/serial	out	shift	register.
Parallel	in/parallel	out	and	serial	in/parallel	out	shift	registers	work	similarly.

Parallel	in/parallel	out	and	serial	in/parallel	out	shift	registers	work	similarly.
In	both	devices,	data	is	received	in	parallel	manner.	The	only	difference	between
these	devices	is	how	input	is	fed	to	the	device.	In	the	parallel	in/parallel	out	shift
register,	data	is	fed	all	at	once.	In	the	serial	in/parallel	out	shift	register,	data	is
fed	bit	by	bit.	Besides,	shifting	operation	in	these	devices	is	the	same	as	in	the
serial	in/serial	out	shift	register.
We	can	summarize	working	principles	of	four	shift	register	types	as	follows.

Shifting	operation	in	all	these	devices	is	the	same.	The	only	difference	between
them	is	how	the	input	and	output	is	received.	Therefore,	let’s	consider	N-bit
serial	in/serial	out	shift	register	to	explain	the	overall	operation.	To	construct	the
shift	register,	we	should	use	N	D	flip-flops.	Here,	each	bit	in	the	sequence	to	be
shifted	is	saved	in	a	flip-flop	named	qi.	In	this	setup,	let	q0	and	qN−1	represent
the	least	and	most	significant	bits,	respectively.	This	shift	register	can	be
explained	best	using	its	state	and	output	equations	as	follows:

As	can	be	seen	in	above	state	equations,	at	every	clock	bits	are	shifted	to	the
right	flip-flop.	The	output	equation	indicates	this	is	a	Moore	machine	since	the
output	depends	only	on	the	present	state	value.
State	and	output	equations	given	above	can	be	modified	such	that	a	left	shift

operation	can	be	performed.	Modified	equations	are	given	below.	As	can	be	seen
in	these	equations,	the	mechanism	of	shifting	operation	is	the	same.	Only	the
connection	between	the	flip-flops,	input,	and	output	pins	is	altered.

10.3.1	Shift	Registers	in	Verilog
Verilog	has	predefined	operators	for	shifting	data	in	a	vector.	The	shift	right

operator	is	“>>”.	The	shift	left	operator	is	“<<”.	Let’s	assume	that	a	vector	Q	is	to
be	shifted	to	left	by	one	bit.	The	Verilog	description	for	this	operation	will	be	Q
<<	1.
Using	predefined	shifting	operators	in	Verilog,	we	can	describe	shift	registers.

Let’s	focus	on	four-bit	serial	in/parallel	out	shift	register	which	shifts	data	to
right.	We	provide	the	Verilog	description	of	this	device	in	Listing	10.7.	We
deliberately	handled	the	serial	in/parallel	out	shift	register	to	show	how	shifting
operation	is	done	in	every	clock	cycle.
Vivado	synthesizes	the	four-bit	serial	in/parallel	out	shift	register	description

as	presented	in	Fig.	10.8.	Here,	only	four	D	flip-flops	are	used	in
implementation.	This	is	in	line	with	the	block	diagram	of	the	shift	register	in	Fig.
10.7.

FIGURE	10.7	Block	diagram	of	four	bit	serial	in/serial	out	shift	register.

10.3.2	Shift	Registers	in	VHDL
The	easiest	way	to	construct	a	shift	register	in	VHDL	is	using	the	array

assignment	operator.	Through	it,	we	can	copy	and	replace	portion	of	the	array	to
be	shifted.	We	provide	the	VHDL	description	of	the	serial	in/parallel	out	shift
register	in	Listing	10.8.	As	can	be	seen	in	this	description,	shifting	is	performed
by	array	operators.	The	synthesization	result	of	the	shift	register	description	will
be	similar	to	the	one	in	Fig.	10.8.	Therefore,	we	did	not	provide	it	here.

FIGURE	10.8	Synthesization	result	of	four-bit	serial	in/parallel	out	shift	register.

Listing	10.7	Verilog	Description	of	Four-Bit	Serial	In/Parallel	Out	Shift
Register

Listing	10.8	VHDL	Description	of	Four-Bit	Serial	In/Parallel	Out	Shift
Register

10.3.3	Multiplication	and	Division	Using	Shift	Registers
We	can	use	shift	registers	to	multiply	or	divide	a	binary	number	by	integer

powers	of	two.	Assume	that	we	keep	a	binary	number	in	shift	register.	As	we
shift	all	its	bits	to	the	left,	while	feeding	input	of	logic	level	0,	the	result	will	be
the	multiplication	of	original	number	by	two.	We	can	shift	the	result	again	to
obtain	multiplication	by	four.	This	operation	can	be	repeated	many	times	to
obtain	the	multiplication	of	original	number	by	a	power	of	two.	Here,	the	reader
should	be	aware	of	overflow	possibility	such	that	the	most	significant	bit	may	be
lost	during	operation.	Therefore,	this	bit	should	be	handled	specifically	during
shifting.	If	shifting	is	done	to	the	right,	then	division	of	the	original	number	by
the	power	of	two	will	be	obtained.
Let’s	consider	a	simple	example	on	binary	multiplication	and	division

operations	by	powers	of	two	in	HDL.	We	can	start	with	the	Verilog	description
in	Listing	10.9.	Here,	we	use	an	eightbit	parallel	in/parallel	out	shift	register	for
multiplication	and	division	operations.	Within	the	description,	p2	represents	the
power	of	two	for	multiplication	or	division	operation.	Variable	md	can	be	set	to
logic	level	1	for	the	multiplication	operation.	It	can	be	set	to	logic	level	0	for	the
division	operation.	If	an	overflow	occurs,	it	is	saved	in	ovr.

Listing	10.9	Verilog	Description	of	the	Eightbit	Parallel	In/Parallel	Out	Shift
Register	for	Multiplication	and	Division	Operations

Listing	10.10	VHDL	Description	of	the	Eightbit	Parallel	In/Parallel	Out	Shift
Register	for	Multiplication	and	Division	Operations

We	provide	the	VHDL	description	of	the	binary	multiplication	and	division
example	in	Listing	10.10.	As	in	the	Verilog	description,	we	use	eightbit	parallel
in/parallel	out	shift	register	for	multiplication	and	division	operations.	Signal
names	here	are	same	as	in	the	corresponding	Verilog	description.	While	setting
bits	to	logic	level	0,	we	used	others	=>’0’.	This	description	is	very	useful	when
the	total	number	of	bits	to	be	processed	is	not	known	in	advance	in	VHDL.
In	Listing	10.10,	we	used	VHDL	keyword	generic	to	pass	a	specific

information	into	an	entity.	More	specifically,	we	used	it	to	define	constant	p2	to
be	used	throughout	the	shift	register	architecture.	We	will	use	generic	in	the
following	chapters	for	such	purposes	as	well.

10.4	Counter	as	a	Sequential	Circuit
The	counter	is	another	sequential	circuit	family	used	in	digital	systems.	As	the

name	implies,	the	first	usage	area	of	this	circuit	is	counting	number	of	input
occurrences.	The	second	usage	area	of	a	counter	is	in	time-based	operations.
Here,	a	number	of	clock	pulses	are	counted.	If	the	period	of	the	clock	is	known,
then	the	total	time	passed	during	counting	operation	can	be	calculated.	The	third
usage	area	of	the	counter	is	in	frequency	division	operation.	Here,	the	frequency
of	the	input	clock	signal	is	divided	by	powers	of	two.
Working	principles	of	a	counter	are	as	follows.	Whenever	an	input	signal

comes,	the	counter	circuit	changes	its	state.	If	we	assign	successive	numbers	to
states	in	the	circuit,	then	the	device	visits	each	number	successively.	Here,	the
total	number	of	states	indicate	the	capacity	of	the	counter.	Based	on	the	number
assignment	to	states,	upward	or	downward	counting	can	be	done.
The	counter	can	best	be	explained	by	its	state	diagram.	Let’s	pick	a	two-bit

(four	state)	up	counter	as	example.	States	of	this	circuit	will	be	00,	01,	10,	and
11.	Hence,	the	circuit	will	count	upwards.	If	the	count	value	reaches	state	11,
then	the	next	state	will	be	00.	To	indicate	that	the	count	reached	the	final	value
and	restarted	counting,	we	can	set	the	output	as	logic	level	1	at	this	transition.
The	corresponding	state	diagram	for	the	overall	operation	will	be	as	presented	in
Fig.	10.9.

FIGURE	10.9	State	diagram	of	two-bit	up	counter.

A	counter	can	be	realized	in	two	different	ways	as	a	synchronous	or	an
asynchronous	sequential	circuit.	Next,	we	explain	each	realization	in	detail.

10.4.1	Synchronous	Counter
In	asynchronous	counter,	all	flip-flops	within	the	sequential	circuit	are

clocked	with	the	same	clock	signal.	We	can	implement	the	two-bit	synchronous
up	counter	as	presented	in	Fig.	10.9.	Since	there	are	four	states	in	the	circuit,	we
will	need	two	flip-flops	in	implementation.	We	can	form	the	state	table	for	the
counter	as	presented	in	Table	10.2.	Here,	the	input	to	the	counter	is	represented
by	the	binary	variable	x.	The	output	of	the	counter	is	denoted	by	y.

TABLE	10.2	State	Table	of	a	Two-Bit
Synchronous	Up	Counter

We	can	form	state	and	output	equations	by	referring	to	Table	10.2	as	follows:

Based	on	these	state	and	output	equations,	the	final	circuit	for	two-bit
synchronous	up	counter	will	be	as	presented	in	Fig.	10.10.

FIGURE	10.10	Circuit	diagram	of	two-bit	synchronous	up	counter.

10.4.2	Asynchronous	Counter
There	is	another	way	of	implementing	the	two-bit	up	counter.	To	do	so,	we

should	analyze	the	state	table	in	Table	10.2	more	closely.	As	can	be	seen	in	this
table,	q1	toggles	its	state	whenever	rising	edge	of	clock	comes	and	input	x	equals
to	logic	level	1.	q2	toggles	its	state	whenever	falling	edge	of	q1	comes	and	input
x	equals	to	logic	level	1.	This	leads	to	asynchronous	(ripple)	counter	in	which
clock	signal	is	fed	only	to	the	first	flip-flop.	The	second	flip-flop	changes	its
state	based	on	the	output	of	the	first	flip-flop.
We	provide	the	circuit	diagram	of	the	two-bit	asynchronous	up	counter	in	Fig.

10.11.	Here,	we	use	two	D	flip-flops.	As	can	be	seen	in	this	figure,	no	extra
combinational	circuit	is	needed.

FIGURE	10.11	Circuit	diagram	of	a	two-bit	asynchronous	up	counter.

10.4.3	Counters	in	Verilog
Counters	can	be	described	in	Verilog	using	arithmetic	operations.	Let’s	start

with	the	two-bit	synchronous	up	counter	in	Fig.	10.10.	We	can	describe	this
circuit	as	presented	in	Listing	10.11.	As	can	be	seen	in	this	description,	counting
operation	is	done	by	arithmetic	addition	by	one	at	every	clock	cycle	when	input
x	is	at	logic	level	1.

Listing	10.11	Verilog	Description	of	Two-Bit	Synchronous	Up	Counter

Vivado	synthesizes	the	two-bit	synchronous	up	counter	in	Listing	10.11	as
presented	in	Fig.	10.12.	Here,	three	LUTs	and	D	flip-flops	are	used	in
implementation.

FIGURE	10.12	Synthesization	result	of	two-bit	synchronous	up	counter.

We	can	generalize	the	two-bit	synchronous	counter	to	N	bits.	Moreover,	we
can	add	up	or	down	counting,	and	clearing	the	count	value	functionality.	We

provide	the	N-bit	counter	having	all	these	properties	in	Listing	10.12.	Here,	ud
decides	the	count	direction.	If	this	variable	is	set	to	logic	level	1,	then	up
counting	is	performed.	Otherwise,	down	counting	is	done.	Variable	clr	can	be
used	to	clear	the	count	value.

Listing	10.12	Verilog	Description	of	N-bit	Synchronous	Up/Down	Counter

Next,	we	consider	the	two-bit	asynchronous	up	counter	in	Fig.	10.11.	We
provide	the	Verilog	description	of	this	circuit	in	Listing	10.13.	As	can	be	seen	in
this	description,	two	always	blocks	are	used	to	perform	the	asynchronous
operation.
Vivado	synthesizes	the	two-bit	asynchronous	up	counter	in	Listing	10.13	as

presented	in	Fig.	10.13.	Here,	four	LUTs	and	three	D	flip-flops	are	used	in
implementation.	This	implementation	clearly	shows	asynchronous	operation	if
the	reader	follows	clock	signal	connections.

FIGURE	10.13	Synthesization	result	of	two-bit	asynchronous	up	counter.

10.4.4	Counters	in	VHDL
Counters	can	also	be	described	in	VHDL.	Let’s	reconsider	the	two-bit

synchronous	up	counter	in	Fig.	10.10.	We	can	describe	this	circuit	as	presented
in	Listing	10.14.	As	can	be	seen	here,	counting	operation	is	done	by	arithmetic
addition	by	one.	The	synthesization	result	of	the	two-bit	synchronous	up-counter
description	will	be	similar	to	the	one	in	Fig.	10.12.	Therefore,	we	did	not	provide
it	here.

Listing	10.13	Verilog	Description	of	Two-Bit	Asynchronous	Up	Counter

Listing	10.14	VHDL	Description	of	Two-Bit	Synchronous	Up	Counter

Listing	10.15	VHDL	Description	of	N-bit	Synchronous	Up/Down	Counter

As	in	the	previous	section,	we	can	generalize	the	counter	to	have	up/down	and
clear	properties.	We	provide	the	VHDL	description	for	this	setup	in	Listing

10.15.	Here,	variable	names	are	the	same	as	the	ones	used	in	corresponding
Verilog	description.	Hence,	the	reader	can	associate	both	descriptions.

Listing	10.16	VHDL	Description	of	Two-Bit	Asynchronous	Up	Counter

Finally,	we	handle	the	two-bit	asynchronous	up	counter	in	Fig.	10.11.	We

provide	the	VHDL	description	of	this	circuit	in	Listing	10.16.	As	can	be	seen	in
this	description,	two	process	blocks	are	used	to	perform	asynchronous
operation.	The	synthesization	result	of	the	two-bit	asynchronous	up-counter
description	will	be	similar	to	the	one	in	Fig.	10.13.	Therefore,	we	did	not	provide
it	here.

10.4.5	Frequency	Division	Using	Counters
The	clock	frequency	of	a	digital	system	may	not	be	suitable	for	operation.

Hence,	we	may	need	to	change	it.	Module	performing	this	is	called	frequency
divider.	Counters	can	be	used	for	this	purpose.	What	we	have	to	do	is	feeding
the	clock	signal	as	input	and	obtaining	new	clock	signal	with	the	frequency
divided	by	powers	of	two	from	the	output	of	counter	flip-flops.	We	provide	such
a	synchronous	frequency	divider	in	Fig.	10.14.	Here,	we	use	T	(toggle)	flip-flops
introduced	in	Sec.	9.2.3.

FIGURE	10.14	Block	diagram	of	a	synchronous	frequency	divider.

Listing	10.17	Verilog	Description	of	Synchronous	Frequency	Divider

Next,	we	consider	HDL	description	of	this	frequency	divider	circuit.	We
provide	the	corresponding	Verilog	description	in	Listing	10.17.	Here,	the
synchronous	counting	is	performed.	Divided	frequency	values	are	taken	from

count	digits.	We	also	provide	the	frequency	division	result	of	the	clock	signal
obtained	from	Vivado	in	Fig.	10.15.	As	can	be	seen	in	this	figure,	at	each	output
the	digit	frequency	of	an	input	clock	is	divided	by	two,	four,	and	eight.	We
provide	the	VHDL	description	of	the	synchronous	frequency	divider	working	on
the	same	principle	in	Listing	10.18.

FIGURE	10.15	Frequency	division	results	of	synchronous	frequency	divider.

10.5	Sequential	Circuit	Design
We	have	introduced	combinational	circuit	design	steps	in	Sec.	7.5.	These

apply	to	sequential	circuit	design	as	well.	However,	the	designer	has	to	plan	state
representations	and	transitions	besides	usual	input/output	relationship	in
designing	a	sequential	circuit.	In	fact,	the	main	design	criterion	is	deciding
which	states	to	be	used.	We	can	benefit	from	either	the	state	diagram	or	state
table	for	this	purpose.	The	easiest	way	is	using	the	state	diagram.	Through	it,	the
designer	can	plan	state	transitions	and	corresponding	input/output	pairs	visually.
This	leads	to	state	and	output	equations.
The	reader	can	either	implement	the	state	and	output	equations	using	HDL	or,

implementation	can	be	done	in	HDL	by	taking	benefit	of	behavioral	modeling.
We	strongly	suggest	the	latter	method	in	implementation	since	it	is	easy	to
describe	working	principles	of	the	sequential	circuit	this	way.	Again	let’s
emphasize	that	ideas	mentioned	here	do	not	reflect	a	complete	design
methodology.	The	reader	should	take	these	just	as	introductory	steps.	Designing
a	sequential	circuit	should	be	mastered	by	consulting	related	literature.

Listing	10.18	VHDL	Description	of	Synchronous	Frequency	Divider

10.6	Applications	on	Sequential	Circuits
We	can	use	sequential	circuits	to	further	improve	applications	introduced	in

previous	chapters.	Therefore,	we	will	reconsider	home	alarm,	digital	safe,	and
car	park	occupied	slot	counting	systems.	We	will	also	introduce	two	new
applications	on	sequential	circuits	as	vending	machine	and	digital	clock	in	this
section.

10.6.1	Improving	the	Home	Alarm	System
Using	sequential	circuits	can	improve	the	home	alarm	system.	To	do	so,	we

can	add	password,	buzzer,	and	LED	blink	modules	to	the	system.	The	modified
system	works	as	follows.	Once	the	alarm	is	activated	by	pressing	btnC	on	the
Basys3	board,	the	rightmost	sevensegment	display	digit	shows	character	A.	This
indicates	that	the	system	is	active.	If	one	of	the	windows	is	opened,	then	the
alarm	LED	turns	on	to	indicate	that	alarm	has	turned	on.	Hence,	the	buzzer	starts
working.	If	the	user	enters	the	correct	password,	then	the	alarm	is	deactivated.
Hence,	the	buzzer	stops.	If	the	door	is	opened,	then	the	user	has	20	seconds	to
enter	the	password.	If	the	correct	password	is	entered	within	this	time	slot,	then
the	alarm	turns	off.	Otherwise,	the	alarm	LED	turns	on	and	buzzer	starts

working.	Counting	of	20	seconds	is	displayed	on	the	two	leftmost	sevensegment
display	digits	of	the	Basys3	board.
We	provide	the	modified	Verilog	description	for	the	home	alarm	module	in

Listing	10.19.	This	module	has	seven	inputs.	These	are	clk	(main	clock	signal),
pass	(eightbit	password),	act	(activation	signal),	door	(door	input),	win1,
win2,	win3	(window	inputs).	Door	and	window	inputs	are	at	logic	level	1	when
they	are	open.	Otherwise	they	are	at	logic	level	0.	The	module	has	five	outputs.
These	are	blinkled	(warning	LED	during	alarm	countdown),	alarmled	(shows
the	alarm	status),	seg,	an	(sevensegment	display	ports),	and	buzzer	(the	buzzer
output).

Listing	10.19	Verilog	Description	of	the	Modified	Home	Alarm	Module	via
Sequential	Circuits

Working	principles	of	the	modified	home	alarm	module	(as	a	state	machine)
are	as	follows.	The	state	machine	has	four	states	as	AOFF,	AON,	PASSCHECK,	and
SOUND.	When	act	goes	to	logic	level	1,	state	changes	from	AOFF	to	AON.	There	are
two	options	here.	If	one	of	the	windows	are	opened,	state	machine	directly	goes
to	SOUND	state	which	sounds	the	alarm.	If	the	door	is	opened,	state	machine	goes
to	PASSCHECK	state.	Here,	the	machine	waits	for	20	seconds	for	the	user	to	enter
password.	The	password	is	initially	set	to	55	in	the	hexadecimal	form.	If	the
entered	password	is	correct,	then	the	machine	goes	to	AOFF	state.	Otherwise,	the
state	machine	goes	to	SOUND	state	which	sounds	the	alarm.	IP	modules
binarytoBCD_0	and	sevenseg_driver_0	should	be	added	to	the	project.
Let’s	explain	the	sevenseg_driver	module	first.	The	main	purpose	of	this

module	is	to	drive	the	sevensegment	display	on	the	Basys3	board.	This	display	is
a	“common	anode”	type	four-digit	display.	There	are	seven	signals,	named	as
seg,	to	drive	four	digits	commonly,	and	four-digit	enable	signal,	named	an,	to
enable	each	digit.	Since	these	are	all	common	anode	signals,	they	should	be	set
to	logic	level	0	when	they	are	active.	Since	four	digits	have	common	seg	signals,
an	signal	should	be	periodically	changed	at	a	rate	faster	than	the	human	eye	can
catch.	In	every	step,	seven-bits	seg	data	will	be	fed	to	the	selected	digit.	We
provide	the	Verilog	description	of	the	module	in	Listing	10.20.	The	module	has

six	inputs	as	clk	(main	clock),	clr	(active-high	reset),	and	four	four-bit	digit
inputs	in1,	in2,	in3,	in4.	Outputs	of	the	module	are	seg	and	an.	The	VHDL
version	of	the	sevensegment	display	driver	module	is	available	in	Listing	10.21.

Listing	10.20	SevenSegment	Display	Driver	Module	in	Verilog	for	Four
Digits	on	the	Basys3	Board

Listing	10.21	SevenSegment	Display	Driver	Module	in	VHDL	for	Four
Digits	on	the	Basys3	Board

Listing	10.22	Binary	to	BCD	Converter	Module	in	Verilog

The	working	principle	of	the	sevensegment	display	driver	module	is	as
follows.	First,	we	need	to	divide	input	clock	by	212	to	drive	segments.	If	clr

goes	to	logic	level	1	at	anytime,	both	seg	and	an	go	to	logic	level	0.	Then,	all
digits	and	segments	are	turned	on	and	8888	is	seen	on	the	display.	Otherwise,	a
state	machine	starts.	We	have	four	states	to	indicate	the	position	of	digits	from
left	to	right.	Note	that	four-bit	inputs	have	been	converted	into	seven-bit
sevensegment	codes	with	the	module	decoder_7seg	in	Listing	8.27.	The	state
machine	starts	in	LEFT	state	where	the	decoded	pattern	is	loaded	to	seg	and	the
first	digit	from	left	is	selected	by	loading	0111	to	an.	Next,	state	turns	to
MIDLEFT.	The	same	operation	is	done	to	drive	the	second	digit	from	left.	This
continues	in	a	loop	for	all	four	digits	in	the	display.
Let’s	explain	the	binarytoBCD	module	next.	This	module	converts	a	binary

number	to	the	corresponding	binary	coded	decimal	(BCD)	form.	For	example,
when	we	have	an	eightbit	binary	number	11111111,	we	cannot	show	it	directly
on	the	sevensegment	display.	Therefore,	we	need	to	obtain	every	digit	as	a	four-
bit	binary	decimal	code.	For	example,	the	corresponding	decimal	number	is	255.
Hence,	we	should	have	0010	for	decimal	two	in	hundreds	digit,	0101	for	decimal
five	in	tens	digit,	and	0101	for	five	in	ones	digit.	We	provide	the	Verilog
description	for	binary	to	BCD	converter	in	Listing	10.22.	The	module	has	one
input	as	binary	representing	the	binary	number	to	be	converted.	Outputs	of	the
module	are	thos,	huns,	tens,	and	ones.	Here,	we	had	to	use	blocking
assignments	in	behavioral	model	to	keep	digit	values.	The	VHDL	version	of	the
binary	to	BCD	converter	is	available	in	Listing	10.23.	We	used	variable
definitions	within	the	description	to	keep	digit	values.	Moreover,	we	had	to	use
the	std_logic_vector	function	which	converts	its	input	to	standard	logic	vector
form.

Listing	10.23	Binary	to	BCD	Converter	Module	in	VHDL

Listing	10.24	Modified	Home	Alarm	System	Implemented	on	the	Basys3
Board	in	Verilog

We	provide	the	top	module	to	implement	the	modified	home	alarm	system	on
the	Basys3	board	in	Listing	10.24.	Here,	we	use	buttons	on	the	board	to	imitate
the	door	and	windows	in	the	home	alarm	module.	Hence,	btnU	represents	the
door,	btnR,	btnD,	and	btnL	stand	for	windows.	Debounce	modules	are	employed
within	the	top	module	to	get	the	clear	button	output.	Sevensegment	display	ports
seg	and	an	are	connected	to	relevant	ports	on	the	Basys3	board.	We	connected	a
passive	piezo	buzzer	module	to	JA	port	on	Basys3	to	sound	the	alarm.	This
buzzer	has	three	ports	as	VCC,	GND,	and	I/O.	The	first	two	ports	are	connected
to	VCC	and	GND	ports	of	JA	on	the	Basys3	board.	I/O	is	connected	to	JA[0].
When	I/O	goes	to	logic	level	0,	the	buzzer	sounds.	We	use	the	first	eight
switches	to	enter	the	password.

10.6.2	Improving	the	Digital	Safe	System

We	can	improve	the	digital	safe	system	by	using	sequential	circuits.	Here,	the
user	will	have	chance	to	enter	his	or	her	password	instead	of	a	fixed	initial	value.
We	provide	the	modified	Verilog	description	for	the	digital	safe	module	in
Listing	10.25.	This	module	has	five	inputs.	These	are	clk	(main	clock	signal),
passinput	(16-bit	password),	pass_set	(input	to	change	password),	pass_reg
(input	to	save	new	password),	and	pass_lock	(to	lock	safe	again	after	the
password	change).	The	output	of	the	module	is	a	two-bit	vector	safestate.	This
output	indicates	the	state	of	lock,	such	that	00	shows	locked;	01	indicates	open;
10	represents	enter	new	password;	and	11	shows	new	password	set.
Working	principles	of	the	modified	digital	safe	module	(as	a	state	machine)

are	as	follows.	The	state	machine	has	two	states:	ENTERPASS	and	SETPASS.	In
ENTERPASS	state,	the	machine	checks	whether	the	input	matches	the	password.	If
this	is	the	case,	safestate	changes	to	01	which	shows	that	lock	is	open.	Besides,
if	pass_set	is	at	logic	level	1,	then	state	of	the	machine	goes	to	SETPASS	where
the	new	password	is	entered.	After	the	user	determines	a	new	password,
pass_reg	should	go	to	logic	level	1	to	save	it.	Then,	pass_lock	should	go	to
logic	level	1	to	lock	the	safe	again.

Listing	10.25	Verilog	Description	of	the	Modified	Digital	Safe	Module	via
Sequential	Circuits

We	can	further	improve	the	digital	safe	system	to	be	implemented	on	the
Basys3	board.	Here,	we	can	show	state	of	the	lock	and	the	new	password	on	the
sevensegment	display.	To	do	so,	we	should	add	the	sevensegment	display
module	as	an	IP	block.	Inputs	of	the	digital	safe	module	will	be	connected	to
buttons	and	switches	on	the	Basys3	board.	Hence,	we	should	also	add	the
debounce	module	as	an	IP	block.	We	provide	the	top	module	for	this	application

in	Listing	10.26.
In	Listing	10.26,	pass_set,	pass_reg,	and	pass_lock	inputs	are	assigned	to

btnU,	btnD,	and	btnC	of	the	Basys3	board	respectively.	Sixteen	switches	are	used
as	passinput.	The	master	clock	of	the	board	is	connected	to	clk	signal.	The
output	safestate	of	the	digital	safe	module	is	kept	in	a	vector	with	the	same
name	to	control	the	sevensegment	display	on	the	board.	Hence,	when	safestate
is	at	00	all	four	sevensegment	display	digits	will	show	character	C	which	stands
for	“Close”.	When	safestate	is	at	01,	all	display	digits	will	show	the	character
O	which	stands	for	“Open”.	When	safestate	is	at	11,	all	digits	will	show	the
character	S	which	stands	for	“Set”.	In	the	01	state	(referring	to	the	password
change),	digits	show	the	password	while	the	user	changes	it.

Listing	10.26	Modified	Digital	Safe	System	Implemented	on	the	Basys3
Board	in	Verilog

10.6.3	Improving	the	Car	Park	Occupied	Slot	Counting	System
We	can	improve	the	car	park	occupied	slot	counting	system	using	sequential

circuits.	Hence,	we	will	use	the	sevensegment	display	to	show	total	occupied
slots.	Since	we	can	use	more	than	one	sevensegment	display	digit	now,	we
extend	the	car	park	system	to	count	for	16	slots.	We	provide	the	modified
Verilog	module	in	Listing	10.27.
We	provide	the	top	module	to	implement	the	modified	car	park	system	on	the

Basys3	board	in	Listing	10.28.	As	in	previous	applications,	we	used	the	Basys3
LEDs,	switches,	and	sevensegment	display	in	this	top	module.	Besides,	we
added	a	proximity	sensor	(working	as	a	switch	to	one	of	the	car	park	clot)	to	the
system	as	well.	The	proximity	sensor	is	connected	to	JC[3]	port	of	the	Basys3
board.	It	works	in	active-low	form	such	that	when	no	obstacle	is	detected,	the
sensor	gives	logic	level	1,	otherwise	it	gives	logic	level	0	as	output.	We	included
sevensegment	display	driver	and	binary	to	BCD	IP	blocks	in	the	top	module.

Listing	10.27	Verilog	Description	of	the	Modified	Car	Park	Module	via
Sequential	Circuits

Listing	10.28	Modified	Car	Park	System	Implemented	on	the	Basys3	Board
in	Verilog

10.6.4	Vending	Machine
We	can	construct	a	prototype	vending	machine	using	sequential	circuits.	Let’s

briefly	explain	how	it	works.	The	machine	has	two	money	inputs	for	25	cents
and	1	dollar	(100	cents).	Here,	the	reader	can	assume	that	the	actual	machine	has
one	input	for	coins.	However,	25	cents	and	1	dollar	are	differentiated	by	a
mechanism.	Hence,	we	see	two	inputs.	The	vending	machine	is	capable	of
offering	four	different	products.	Each	product	tray	can	keep	up	to	15	items.	The
user	can	select	a	product	by	its	corresponding	button.	After	the	selection,	the
user	should	press	the	buy	button	to	finalize	the	operation.	The	vending	machine
gives	signal	when	a	product	goes	out	of	stock.	Then,	the	maintenance	team	can
fill	the	corresponding	tray	and	update	the	stock	number	by	a	button.
We	provide	the	Verilog	description	of	the	vending	machine	module	in	Listing

10.29.	This	module	has	six	inputs.	These	are	clk	(main	clock	signal),	coin1	(25
cents	input),	coin2	(1	dollar	input),	select	(selection	input,	every	bit
representing	a	different	product),	buy	(buy	the	selected	product),	and	load	(load
empty	tray).	The	vending	machine	module	has	three	outputs.	These	are	money

(total	deposited	money),	products	(triggers	the	tray	of	the	corresponding
product	after	a	successful	trade),	and	outofstock	(to	indicate	a	product	has	gone
out	of	stock).

Listing	10.29	Verilog	Description	of	the	Vending	Machine

Working	principles	of	the	vending	machine	(as	a	state	machine)	are	as
follows.	In	every	rising	edge	of	clk,	the	machine	looks	for	a	rising	edge	on
coin1,	coin2,	and	buy.	If	coin1	goes	to	logic	level	1,	the	machine	adds	25	cents
as	a	credit.	If	coin2	goes	to	logic	level	1,	the	machine	adds	1	dollar	(100	cents)
as	a	credit.	If	the	user	presses	buy	button,	the	machine	first	checks	which	product
is	selected.	Then,	it	checks	whether	the	total	credit	is	enough	and	there	is	at	least
one	product	in	stock.	If	all	the	conditions	are	satisfied,	then	the	vending	machine
withdraws	price	of	the	product	from	total	credit;	decreases	stock	of	the	product
by	one;	and	sets	the	relevant	bit	of	the	product	output	to	logic	level	1.	When	buy
goes	to	logic	level	0,	products	vector	is	also	reset	to	logic	level	0.	At	the	end	of
each	transaction,	the	vending	machine	checks	whether	any	product	has	gone	out
of	stock.	Again,	we	should	remind	that	each	product	is	represented	by	a	separate
bit	in	input,	output,	and	register	vectors	in	the	module.	For	example,	if
outofstock	is	0010,	this	means	that	the	second	product	is	out	of	stock.	Or,	if	the
maintenance	team	loads	the	tray	of	the	fourth	product,	then	load	should	be	set	to
1000.
We	provide	the	top	module	to	implement	the	vending	machine	on	the	Basys3

board	in	Listing	10.30.	As	in	previous	applications,	we	used	the	Basys3	LEDs,
switches,	and	sevensegment	display	in	this	top	module.	Besides,	we	included	the
sevensegment	display,	binary	to	BCD,	and	debounce	IP	blocks	in	the	top
module.

10.6.5	Digital	Clock
We	can	construct	a	digital	clock	using	counters	introduced	in	Sec.	10.4.	Our

clock	displays	hour	and	minute	digits	with	10−8	-second	accuracy.	The	user	can
adjust	the	time	by	buttons.
We	provide	the	Verilog	description	of	the	digital	clock	module	in	Listing

10.31.	This	module	has	five	inputs.	These	are	clk	(main	clock	signal),	en	(active
high	enable	signal),	rst	(resets	all	outputs	when	in	logic	level	1),	hrup	and
minup	(adjust	hour	and	minute	values).	The	digital	clock	module	has	six	outputs
each	with	four	bits.	These	are	s1	and	s2	(for	second	digits),	m1	and	m2	(for
minute	digits),	h1	and	h2	(for	hour	digits).

Listing	10.30	Vending	Machine	Implemented	on	the	Basys3	Board	in	Verilog

Listing	10.31	Verilog	Description	of	the	Digital	Clock

Working	principles	of	the	digital	clock	(as	a	state	machine)	are	as	follows.
There	is	an	integer	counter	in	the	module.	There	is	also	a	parameter	onesecond
representing	one	second	when	100-MHz	clock	is	used.	In	every	rising	edge	of
the	clock,	rst	is	checked.	If	it	is	at	logic	level	1,	all	output	values	are	reset.	Else
the	machine	checks	minup	and	hrup	to	increment	minute	or	hour	digits	by	one	to
adjust	the	clock.	If	rst,	minup,	and	hrup	are	at	logic	level	0	and	en	is	at	logic
level	1	then	the	clock	starts	operating.	Here	it	waits	for	the	counter	to	count	up	to
onesecond	to	increment	second	digits.	Afterward,	minute	and	hour	digits	are
incremented	as	in	an	actual	digital	clock	operation.
We	provide	the	top	module	to	implement	the	digital	clock	on	the	Basys3

board	in	Listing	10.32.	As	in	previous	applications,	we	used	the	Basys3	LEDs,
switches,	and	sevensegment	display	in	this	top	module.	Here,	sw[0]	enables	the
clock	when	it	goes	to	logic	level	1;	btnC	resets	the	clock;	btnU	increases	the	hour
digit	and	btnR	increases	the	minute	digit.	Besides,	we	included	the	sevensegment
display,	binary	to	BCD,	and	debounce	IP	blocks	within	the	top	module.

10.7	FPGA	Building	Blocks	Used	in	Sequential
Circuits
The	FPGA	building	blocks	used	in	this	chapter	are	closely	related	to	the	ones

considered	in	Sec.	9.8.	Therefore,	it	is	not	necessary	to	reconsider	them	here.
However,	we	strongly	suggest	the	reader	to	observe	Vivado	synthesis	result	of
sequential	circuits	evaluated	in	this	chapter.	This	may	allow	understanding
sequential	circuit	concepts	better.
We	should	mention	one	important	FPGA	building	block	usage	at	this	step.	If

sensitivity	list	of	an	always	block	in	behavioral	description	depends	on	positive
or	negative	edge	of	a	clock	signal	(such	as	posedge	clk	or	negedge	clk),	then
any	variable	represented	by	the	reg	keyword	will	automatically	have	a	D	flip-
flop.	Hence,	this	value	can	be	kept	between	clock	cycles.

10.8	Summary
Sequential	circuits	allow	constructing	digital	systems	with	memory.	This

opens	up	a	new	perspective	which	cannot	be	performed	by	combinational
circuits.	Therefore,	we	explored	sequential	circuits	in	detail	in	this	chapter
starting	from	basic	definitions.	Then,	we	analyzed	timing	in	sequential	circuits.
Here,	we	can	either	use	synchronous	or	asynchronous	operations.	We	provided
HDL	examples	for	both.	Afterward,	we	handled	shift	registers	and	counters	as
two	popular	sequential	circuit	families.	Then,	we	briefly	introduced	sequential
circuit	design	methodology.	We	suggest	the	reader	to	master	how	sequential
circuits	can	be	designed	using	related	literature.	We	believe	the	overall	handling
of	sequential	circuits	in	this	chapter	will	help	the	reader	understand	advanced
concepts	introduced	in	following	chapters.

Listing	10.32	Digital	Clock	Implemented	on	the	Basys3	Board	in	Verilog

10.9	Exercises
10.1			A	sequential	circuit	is	represented	by	the	state	diagram	in	Fig.	10.16.
The	input	to	the	circuit	is	x.	The	output	of	the	circuit	is	y.	Implement	this
sequential	circuit	in	Verilog	or	VHDL	using	case	statements.

FIGURE	10.16	State	diagram	for	Exercise	10.1.

10.2			Redo	Exercise	9.8	such	that	the	LED	turns	on	after	every	five	button
presses.	It	turns	off	in	the	second	button	press	after	turned	on.
10.3			Obtain	the	state	diagram	of	the	two-bit	down	counter	in	Sec.	10.4.
10.4			(Barrel	shifter.)	Design	a	barrel	shifter	in	Verilog	or	VHDL.
10.5			(Asynchronous	frequency	divider.)	Design	an	asynchronous
frequency	divider	in	Verilog	or	VHDL.
10.6			(Frequency	divider.)	Design	a	frequency	divider	module	in	Verilog
or	VHDL	such	that	the	user	can	select	what	the	division	ratio	should	be	by
selecting	pins	of	the	device.	The	device	should	feed	the	output	as	frequency
of	the	input	clock	divided	by	one	(no	division),	two,	four,	and	eight.
10.7			(Frequency	divider.)	Design	a	frequency	divider	module	in	Verilog
or	VHDL	such	that	the	user	can	select	what	the	division	ratio	should	be	by
selecting	pins	of	the	device.	The	device	should	feed	the	output	as	frequency
of	the	input	clock	divided	by	1	(no	division),	6,	10,	and	12.
10.8			(Up-down	counter.)	Design	an	up-down	counter	in	Verilog	or
VHDL	such	that	the	digital	system	counts	up	to	the	desired	number.	Then,
it	counts	downward	to	zero.	When	the	count	value	reaches	zero,	the	output
should	be	logic	level	1.
10.9			(Frequency	divider.)	Design	a	frequency	divider	in	Verilog	or

VHDL	to	generate	a	clock	with	one	hertz	frequency	using	the	master	clock
of	the	Basys3/Arty	board.	Connect	the	generated	clock	to	a	LED	on	the
board	to	observe	how	it	turns	on	and	off.

10.10			(Edge	detector	in	Verilog.)	An	edge	detector	circuit	is	used	to	detect	the
rising	edge	of	a	signal	with	reference	to	the	associated	clock.	Analyze	the
Verilog	description	of	the	edge	detector	in	Listing	10.33.

10.11			(Edge	detector	in	VHDL.)	Design	an	edge	detector	in	VHDL	using	the
analysis	in	Exercise	10.10.

10.12			(Blink	the	LED.)	Design	a	digital	system	to	blink	led[0]	on	the	Basys3
board	every	second	using	a	frequency	divider	and	counter.	In	other
words,	the	rightmost	LED	on	the	board	will	turn	on	one	second	and	turn
off	one	second	periodically.

a.	Construct	a	synchronous	frequency	divider	module	in
Verilog.	Input	to	the	module	will	be	the	clock	of	Basys3
board	which	has	a	frequency	100	MHz.	The	output	of	the
module	will	be	another	clock	with	frequency	100/8	MHz.
b.	Write	a	complete	top	module	in	Verilog	or	VHDL	to	turn
on	and	off	led[0]	every	second.	To	do	so,	construct	a	24-bit
counter.	Note	that	224	=16777216.	Therefore,	the	counter
can	count	from	0	to	16777215	in	decimal.	Use	the	Verilog	or
VHDL	description	for	frequency	division	in	the	previous
part	of	the	exercise.

Listing	10.33	Verilog	Description	of	the	Edge	Detector

10.13			(DNA	sequence	detector.)	DNA	is	a	helical	structure	of	two	conjugate
strands.	One	strand	in	a	string	of	about	3	billion	organic	molecules	is
named	as	nucleotides.	There	are	four	known	nucleotides:	Adenine	(A),
Thymine	(T),	Guanine	(G),	and	Cytosine	(C).	The	string	of	nucleotides
tells	us	much	about	the	organism.	We	can	develop	a	state	machine	to
detect	a	specific	nucleotide	sequence.	Assume	that	we	would	like	to
detect	the	exact	sequence	composed	of	nucleotides	ATTCGC.	Form	a
Verilog	or	VHDL	description	to	implement	this	detector.	Here,	it	is
assumed	that	nucleotides	are	read	and	provided	to	our	system	as	four
code	values	as	00,	01,	10,	and	11	representing	A,	T,	C,	and	G.

10.14			(DNA	sequence	detector	with	empty	slots.)	We	can	extend	the
sequence	detector	in	Exercise	10.13	such	that	extra	three	nucleotides	are
allowed	between	A	and	T	in	the	sequence	ATTCGC.	Modify	the	Verilog
or	VHDL	description	of	your	DNA	sequence	detector	to	handle	this	case.

10.15			(Detecting	the	first	logic	level	1	in	a	binary	sequence.)	Assume	that	we
are	fed	with	a	binary	sequence	with	values	of	logic	1	and	0.	Design	and
implement	a	digital	system	in	Verilog	or	VHDL	for	the	following
operations:

a.	When	the	first	logic	level	1	in	the	sequence	is	detected,	the
output	of	the	system	becomes	logic	level	1.
b.	The	location	of	the	detected	logic	level	1	is	fed	as	another
output	of	the	digital	system.

10.16			(Snake	game.)	We	can	design	a	snake	game	using	sevensegment	display
and	buttons	on	the	Basys3	board.	The	aim	of	the	game	is	extending	the
snake	while	not	crossing	over	itself.	We	can	form	the	snake	on	segments
of	the	rightmost	sevensegment	display	digit.	Buttons	btnU,	btnD,	btnL,
and	btnR	can	be	used	to	enter	the	next	direction	of	the	snake.	Here,	we
will	take	eight	directions	as	up,	down,	left,	right,	up	left,	up	right,	down
left,	and	down	right.	btnC	acts	as	a	reset	button	for	the	game.

a.	Form	the	basic	game	in	Verilog	or	VHDL	such	that	snake
is	initially	represented	by	a	segment	(let’s	take	E)	in	the
rightmost	sevensegment	display	digit	of	the	Basys3	board.
As	the	user	extends	the	snake	fully,	led[0]	on	the	board	will
turn	on.	If	the	snake	crosses	itself	during	the	game,	the	snake
turns	back	to	its	initial	state.
b.	Add	a	timing	module	such	that	the	snake	extension	should
be	done	within	limited	time.
c.	Is	it	possible	to	extend	this	game	on	four	sevensegment
display	digits?

10.17			(Pulse	width	modulation.)	The	aim	of	the	pulse	width	modulation
(PWM)	is	forming	a	digital	signal	with	constant	period	but	with	varying
on	and	off	time	values	within	a	period.	Form	a	Verilog	or	VHDL
description	to	observe	basic	working	principles	of	the	PWM.

10.18			(Digital	clock.)	How	can	we	implement	the	digital	clock	application	in
Sec.	10.6	using	asynchronous	operations	in	Verilog	or	VHDL?

CHAPTER	11

Embedding	a	Soft-Core	Microcontroller

Most	of	the	time,	digital	systems	implemented	on	field-programmable	gate
array	(FPGA)	and	microcontroller	platforms	seem	like	rivals.	In	fact,	this	is	not
the	case.	Both	platforms	have	their	advantages	and	disadvantages	as	mentioned
in	Chap.	2.	Fortunately,	the	FPGA	design	allows	including	a	microcontroller	(in
soft-core	form)	as	an	IP	block.	This	opens	up	a	way	to	benefit	from	advantages
of	both	the	FPGA	and	microcontroller	platforms	at	once.	Therefore,	this	chapter
focuses	on	how	a	soft-core	microcontroller	can	be	implemented	on	the	FPGA
platform.	To	explain	this	process,	we	will	start	with	introducing	building	blocks
of	a	generic	microcontroller.	While	doing	this,	we	will	reference	combinational
and	sequential	circuit	blocks	introduced	in	previous	chapters.	Then,	we	will
introduce	two	Xilinx	microcontroller	IP	cores	named	PicoBlaze	and	MicroBlaze.
Finally,	we	will	explore	properties	of	both	microcontrollers	in	detail	as	well	as
their	usage	in	simple	projects.
Before	going	further,	let’s	clarify	one	point.	This	chapter	is	not	on

microcontroller	programming	which	requires	a	study	of	its	own.	Hence,	we	will
direct	the	reader	to	related	references	for	this	purpose	[32].	Instead,	the	aim	here
is	explaining	basics	of	a	microcontroller	architecture	from	an	hardware
description	language	(HDL)	point	of	view.	This	will	be	a	very	valuable	insight
for	both	FPGA	and	microcontroller	users.	The	former	will	understand	how	a
microcontroller	can	be	constructed	by	HDL	description.	The	latter	will	have	a
chance	to	observe	what	is	going	on	inside	a	microcontroller	in	lowest	(possible)
level.	Hence,	the	FPGA	and	microcontroller	users	can	benefit	from	topics
explored	in	this	chapter.

11.1	Building	Blocks	of	a	Generic	Microcontroller
There	are	several	microcontroller	families	developed	by	different	vendors.

Although	these	have	different	properties,	they	share	similar	building	blocks.	In
this	section,	we	overview	these	building	blocks	by	taking	a	generic
microcontroller	as	benchmark.	This	will	give	an	insight	in	the	microcontroller

microcontroller	as	benchmark.	This	will	give	an	insight	in	the	microcontroller
development,	discussed	in	the	following	sections.

11.1.1	Central	Processing	Unit
The	central	processing	unit	(CPU)	is	a	sequential	circuit	in	its	basic	sense.	It	is

responsible	for	executing	commands	given	to	it	in	the	form	of	instructions.
Therefore,	the	CPU	is	the	fundamental	block	responsible	for	working	of	a
microcontroller.
Each	CPU	family	has	a	specific	instruction	set	of	its	own.	The	user	should

form	a	code	block	using	these	instructions	to	program	the	microcontroller.
Generally,	this	is	called	assembly	language	programming.	Recent
microcontrollers	also	allow	C,	C++,	or	similar	languages	for	programming.	Each
program	is	executed	sequentially	by	the	CPU.	If	allowed,	interrupts	are	also
served	such	that	an	asynchronous	operation	is	performed.
Data	or	instructions	to	be	processed	by	the	CPU	should	be	taken	from	other

modules	such	as	memory	and	peripheral	units.	Two	set	of	wires	are	needed	for
this	operation.	The	first	set	is	address	bus	which	holds	the	location	of	the	data	(or
instruction)	to	be	processed.	The	actual	data	(or	instruction)	is	carried	by	the	data
bus	which	is	the	second	set	of	wires.	The	size	of	the	data	bus	helps	decide	the
type	of	microcontroller,	such	as	either	eight	bit	or	16	bit.
Most	CPUs	have	registers	on	them.	These	are	data	storage	elements	as

explained	in	Sec.	9.3.	The	bit	size	of	these	registers	should	also	be	in	line	with
the	type	of	microcontroller.	Hence,	an	eightbit	microcontroller	will	have
registers	formed	also	of	eight	bits.	The	first	group	of	registers	is	reserved	for	the
operation	of	the	CPU.	One	such	register	is	the	program	counter	(PC)	which
holds	the	address	of	the	next	instruction	to	be	executed.	Depending	on	the	type
of	the	CPU,	there	may	also	be	a	specific	register	(status	register)	holding	the
status	of	the	CPU	after	an	instruction	is	executed.	This	is	also	called	a	flag.
Some	flags	can	be	used	to	modify	the	working	state	of	the	CPU,	such	as
allowing	an	operation	to	be	executed.	The	second	group	of	registers	is	provided
to	the	usage	of	the	programmer.

11.1.2	Arithmetic	Logic	Unit
An	arithmetic	logic	unit	(ALU)	is	a	subpart	of	the	CPU	responsible	for

executing	arithmetic	and	logic	operations.	Therefore,	the	ALU	is	basically
composed	of	combinational	circuits.	Depending	on	the	microcontroller	type,	the
ALU	can	perform	addition,	subtraction,	multiplication,	and	division	operations.
Most	microcontrollers	will	only	have	addition	and	subtraction	operations	since
they	are	easy	to	implement.	These	operations	are	done	on	fixed-point	numbers.

they	are	easy	to	implement.	These	operations	are	done	on	fixed-point	numbers.
If	floating-point	operations	need	to	be	done,	the	microcontroller	should	have	a
floating-point	unit.	Logic	operations	to	be	performed	in	the	ALU	may	be	AND,
OR,	NOT,	and	XOR.	Besides,	the	ALU	may	have	a	comparator	unit.

11.1.3	Memory
A	microcontroller	needs	memory	for	two	reasons.	First,	instructions	to	be

executed	by	the	CPU	should	be	kept	somewhere.	Program	memory	(ROM)	is	the
place	for	this	operation.	Second,	some	instructions	to	be	executed	will	work	on
data	which	need	to	be	stored	in	memory.	Data	memory	(RAM)	will	be	the	block
for	this	operation.	Therefore,	a	microcontroller	should	have	ROM	and	RAM
blocks.	Depending	on	the	microcontroller	type,	the	size	of	these	blocks	will
differ.

11.1.4	Oscillator/Clock
Being	a	sequential	device,	the	microcontroller	needs	a	clock	signal	to	operate.

A	clock	is	generated	either	by	an	external	source	or	internal	oscillator	in	the
microcontroller.	Initial	microcontrollers	had	just	one	clock	source	to	operate.
Recent	microcontrollers	have	more	than	one	clock	source	such	that	each	can	be
used	by	a	different	block	in	the	microcontroller.	This	allows	enabling	and
disabling	different	blocks	based	on	the	application	at	hand.	As	a	result,	power
savings	can	be	achieved	by	using	only	needed	blocks.

11.1.5	General	Purpose	Input/Output
A	microcontroller	interacts	with	the	outside	world	through	its	input	and	output

pins.	These	are	called	general	purpose	input	and	output	(GPIO).	Most	of	the
times,	GPIO	pins	operate	with	digital	data.	These	pins	may	be	of	use	for	other
applications	as	well,	such	as	the	digital	communication	and	analog-to-digital
conversion.	Therefore,	the	reader	can	use	these	pins	for	a	wide	range	of
applications.

11.1.6	Other	Blocks
A	microcontroller	may	also	have	other	blocks	generally	called	peripherals.

The	digital	communication,	analog-to-digital	converter	(ADC),	and	digital-to-
analog	converter	(DAC)	can	be	counted	as	such	blocks.	A	microcontroller
implemented	on	the	FPGA	has	freedom	on	such	blocks	since	any	digital	device
can	be	implemented	alongside	it.	In	other	words,	the	user	is	free	to	add	any
peripheral	device	to	the	microcontroller	implemented	on	the	FPGA.

11.2	Xilinx	PicoBlaze	Microcontroller
PicoBlaze	is	an	eightbit	soft-core	microcontroller	developed	by	Xilinx.	The

specific	core	to	be	used	in	this	book	is	called	KCPSM6,	which	is	suitable	for	the
Xilinx	Artix-7	FPGAs.	PicoBlaze	documentation	and	files	can	be	downloaded
from	[34]	as	file	KCPSM6_Release9_30Sept14.zip.	We	will	next	analyze
functional	blocks	of	PicoBlaze.	Then,	we	will	explore	how	it	can	be	used	in
connection	with	Verilog	and	VHDL	descriptions.

11.2.1	Functional	Blocks	of	PicoBlaze
Functional	block	diagram	of	PicoBlaze	(provided	by	Xilinx)	is	presented	in

Fig.	11.1.	We	will	explain	PicoBlaze	using	it	based	on	definitions	in	Sec.	11.1.
However,	we	will	not	cover	all	blocks	and	operations	(such	as	stack)	in	this
figure	to	simplify	the	explanation.	More	information	on	these	issues	can	be
found	in	[35,	36].
The	CPU	is	not	specifically	shown	in	Fig.	11.1.	However,	we	can	consider	the

instruction	decoder,	PC,	stack,	registers,	and	flags	as	parts	of	the	CPU.	The
instruction	decoder	is	responsible	for	fetching	and	preparing	the	instruction	to	be
executed.	The	PC	holds	the	address	of	the	next	instruction	to	be	executed.	The
PC	is	automatically	incremented	to	the	next	instruction	location	when	the
present	instruction	is	executed.	PicoBlaze	has	a	10-bit	PC	that	supports	1024
instruction	address.	PicoBlaze	has	16	registers	each	holding	eight	bits.	These	are
named	as	s0	to	sF	in	Fig.	11.1.	There	are	also	three	flags	in	PicoBlaze.	The	first
one,	called	IE,	enables	and	disables	interrupts.	The	second	and	third	flags	are
called	Z	and	C,	respectively.	These	are	set	when	a	zero	or	carry	occurs	after	the
ALU	operation.
PicoBlaze	has	its	own	assembly	language	formed	of	instructions	represented

by	18	bits.	The	assembly	language	and	its	usage	are	explained	in	detail	in	[35,
36].	Instructions	to	be	executed	are	saved	in	program	memory	called	instruction
PROM.	The	program	written	in	assembly	language	should	be	embedded	to
PROM	via	a	specific	procedure	explained	in	Sec.	11.2.4.	PicoBlaze	has	the	data
memory	called	Scratchpad	RAM	which	can	save	up	to	64	bytes	of	data.

FIGURE	11.1	Functional	block	diagram	of	the	PicoBlaze	microcontroller.

The	ALU	in	PicoBlaze	can	perform	arithmetic	and	logic	operations	required
by	the	instruction	to	be	executed.	Arithmetic	operations	that	can	be	performed
on	PicoBlaze	are	addition	and	subtraction.	Logic	and	compare	operations	that
can	be	performed	on	the	microcontroller	are	bitwise	logic	operations,	arithmetic
compare	and	bitwise	test	operations,	and	comprehensive	shift	and	rotate
operations.
The	GPIO	in	PicoBlaze	is	indicated	by	IN_PORT,	OUT_PORT,	and

PORT_ID	in	Fig.	11.1.	PicoBlaze	supports	up	to	256	input	and	256	output	pins
or	a	combination	of	both.	The	interrupt	is	indicated	as	another	input	called
INTERRUPT	in	Fig.	11.1.
The	oscillator/clock	module	is	not	specifically	shown	in	Fig.	11.1.	However,

the	user	should	add	it	so	that	the	microcontroller	can	operate.	Moreover,	the	user
is	free	to	add	any	extra	peripheral	blocks	to	PicoBlaze	through	the	HDL
description.

11.2.2	PicoBlaze	in	Verilog
Xilinx	provides	the	Verilog	description	of	the	PicoBlaze	microcontroller	in

KCPSM6_	Release9_30Sept14.zip.	The	microcontroller	module	in	Verilog	is
named	as	kcpsm6.v	within	this	archive.	The	reader	can	use	this	module	within
his	or	her	design	by	providing	necessary	peripheral	devices	including	the	clock
signal.	We	provide	the	shortened	version	of	kcpsm6.v	in	Listing	11.1.	Here,	all
input	and	output	connections	of	the	microcontroller	are	defined.

To	program	the	microcontroller,	the	reader	should	prepare	a	file	(with
extension	psm)	consisting	of	assembly	language	instructions.	These	should	be
embedded	to	PROM.	To	do	so,	the	reader	should	run	the	assembler	kcpsm6.exe
which	can	be	found	in	KCPSM6_	Release9_30Sept14.zip.	The	assembler	will
convert	the	file	containing	assembly	language	instructions	to	a	Verilog	file	to	be
added	to	the	project.	At	this	point,	please	remember	that	the	Verilog	file
ROM_form.v	should	be	in	the	same	folder	with	the	assembler	kcpsm6.exe.	As	all
files	are	added	and	settings	are	done,	the	Verilog	description	can	be
implemented.	We	will	provide	such	an	example	in	Sec.	11.2.4.

11.2.3	PicoBlaze	in	VHDL
Xilinx	also	provides	the	VHDL	description	of	the	PicoBlaze	microcontroller

in	KCPSM6_	Release9_30Sept14.zip.	The	microcontroller	module	in	VHDL	is
named	as	kcpsm6.vhd	within	the	archive.	The	reader	can	use	this	module	within
his	or	her	design	by	providing	necessary	peripheral	devices	including	the	clock
signal.	We	provide	the	shortened	version	of	kcpsm6.vhd	in	Listing	11.2.	As	in
the	Verilog	description,	all	input	and	output	connections	of	the	microcontroller
are	defined.

Listing	11.1	Verilog	Description	of	the	PicoBlaze	Microcontroller	in
Shortened	Form

Programming	the	microcontroller	via	its	VHDL	description	is	the	same	as	in
Verilog.	The	only	difference	here	is	that	the	VHDL	file	ROM_form.vhd	should	be
in	the	same	folder	with	the	assembler	kcpsm6.exe.	Besides,	the	project	should	be
implemented	as	in	the	previous	section.

11.2.4	PicoBlaze	Application	on	the	Basys3	Board
To	show	how	an	actual	Verilog	project	can	be	established	using	PicoBlaze,

we	direct	the	reader	to	Phil	Tracton’s	GitHub	repository	in	[37].	There	are
several	projects	in	this	address.	However,	we	will	only	use	digital	I/O	example
in	[38].	The	idea	of	this	project	is	controlling	first	eight	LEDs	of	the	Basys3
board	by	corresponding	eight	switches.	The	reader	can	benefit	from	this	project
such	that	he	or	she	can	observe	how	PicoBlaze	can	be	used	with	GPIO.	As	we
were	writing	this	book,	VHDL	version	of	the	project	was	not	available.
However,	the	reader	can	benefit	from	IP	block	operations	to	use	the	Verilog
description	in	a	VHDL	project.

description	in	a	VHDL	project.

11.3	Xilinx	MicroBlaze	Microcontroller
MicroBlaze	is	a	32-bit	soft-core	microcontroller	developed	by	Xilinx.	It	has	a

fairly	complex	architecture	compared	to	PicoBlaze.	Therefore,	we	will	not
handle	its	functional	blocks	in	detail	here.	Instead,	we	refer	the	reader	to	related
references	[39,	40].	Fortunately,	Xilinx	offers	MicroBlaze	IP	cores	in	Vivado
which	we	will	introduce	next.

Listing	11.2	VHDL	Description	of	the	PicoBlaze	Microcontroller	in
Shortened	Form

11.3.1	MicroBlaze	as	an	IP	Block	in	Vivado
Vivado	has	two	MicroBlaze	IP	cores	named	MicroBlaze	and	MicroBlaze

Vivado	has	two	MicroBlaze	IP	cores	named	MicroBlaze	and	MicroBlaze
microcontroller	system	(MCS).	Xilinx	offers	a	detailed	comparison	of	both	cores
on	its	website	[41].	As	can	be	seen	there,	MicroBlaze	MCS	is	a	lite	version	of
MicroBlaze.	However,	it	is	easier	to	use.	Therefore,	we	will	focus	on	it	here.
MicroBlaze	MCS	core	can	be	reached	from	the	IP	catalog	under	the	list

“Embedded	processing”	and	“processor.”	The	reader	can	select	MicroBlaze
MCS	for	usage	by	pressing	on	it	twice.	Afterward,	the	customize	IP	window
opens	up	as	in	Fig.	11.2.	As	can	be	seen	in	this	figure,	the	user	can	modify
almost	all	microcontroller	properties	directly	in	this	window.	Afterward,	the
same	steps	for	adding	an	IP	block	to	a	project	(as	explained	in	Sec.	4.7)	can	be
followed	to	add	the	MicroBlaze	MCS.

FIGURE	11.2	MicroBlaze	MCS	in	IP	catalog.

At	this	stage,	let’s	assume	that	we	will	be	using	MicroBlaze	MCS	to	turn	on
and	off	LEDs	by	the	corresponding	switches	as	in	Sec.	11.2.4.	Therefore,	we
should	set	the	clock,	memory,	gpi,	and	gpo	properties	from	the	MicroBlaze	MCS
customize	IP	window.	Leave	the	clock	frequency	at	100.0	MHz	and	set	memory
size	to	16	KB	in	the	MCS	tab.	Then,	switch	to	the	GPO	tab.	Make	sure	General
Purpose	Output	1	is	selected	and	set	the	number	of	bits	to	16	since	we	will	use
all	LEDs	on	the	board.	Likewise,	in	the	GPI	tab,	select	General	Purpose	Input	1
and	set	the	number	of	bits	to	16	since	we	will	use	all	switches	on	the	board.	As
all	these	settings	are	done,	press	OK.	Generate	Output	Products	window	will
appear.	Here,	click	on	Generate	to	proceed.	You	will	be	informed	by	a	window
saying	“Out-of-context	module	run	was	launched	for	generating	output
products.”	Just	click	OK.	Vivado	generates	the	instantiation	template	for	Verilog
(in	simplified	form)	as	in	Listing	11.3.	The	VHDL	version	of	this	template	is
presented	in	Listing	11.4.	Next,	we	will	use	these	instantiation	templates	in	an
application.

Listing	11.3	MicroBlaze	MCS	Instantiation	Template	in	Verilog

11.3.2	MicroBlaze	MCS	Application	on	the	Basys3	Board
We	will	turn	on/off	LEDs	via	switches	on	the	Basys3	board	in	this	application

as	described	in	Sec.	11.2.4.	Here,	we	will	provide	only	the	Verilog	description
since	most	steps	will	be	similar	in	VHDL.	Hence,	we	expect	the	reader	to
transfer	this	design	to	VHDL	if	needed.	Let’s	first	create	a	project	named
Basys3_Microblaze.	Do	not	add	any	sources	to	the	project	at	startup.	As	the
project	is	created,	add	a	new	Verilog	source	file	and	include	the	MicroBlaze
MCS	IP	block	to	the	project	as	explained	in	Sec.	11.3.1.	After	adding	and
modifying	the	instantiation	template,	top	module	of	the	project	will	be	as	in
Listing	11.5.

Listing	11.4	MicroBlaze	MCS	Instantiation	Template	in	VHDL

Listing	11.5	Initial	Verilog	Description	of	the	Top	Module	for	MicroBlaze
Application	on	Basys3

The	top	module	in	Listing	11.5	has	a	clk	input	as	the	master	clock	of	the
system.	The	center	button	(btnC)	will	be	used	as	the	reset	button	of	the
MicroBlaze	microcontroller.	Last,	all	switches	and	LEDs	are	associated	to	the
Basys3	board	items	via	the	XDC	file	to	be	added	to	the	project.	Therefore,	add	it
to	the	project	as	explained	in	Sec.	4.6.1.	Do	not	forget	to	enable	lines
corresponding	to	the	clock,	16	LEDs,	and	switches.
Follow	the	steps	in	Sec.	4.6.2	to	generate	the	bitstream	of	the	project.	At	this

step,	implementation	in	the	Vivado	side	is	complete.	Once	the	bitstream	is
generated,	from	the	Vivado	main	screen	go	to	File	→	Export	→	Export
Hardware.	There,	click	OK	by	leaving	“include	bitstream”	option	unchecked.	To
program	the	MicroBlaze	microcontroller	in	C	language,	we	will	use	Xilinx
software	development	kit	(SDK)	which	comes	with	the	Vivado	WebPACK.	If
this	module	has	not	been	installed	yet,	go	to	Help	→	Add	design	tools	from
Vivado	selections	and	add	it.
We	will	proceed	with	Xilinx	SDK	and	embed	a	C	code	for	the	project.	Here,

we	will	benefit	from	Duckworth’s	tutorial	titled	MicroBlaze	MCS	Tutorial,	v2

and	available	at	his	website	[42].	Launch	Xilinx	SDK	by	pressing	File	→
Launch	SDK	item.	A	welcome	screen	appears	asking	for	the	“exported	location”
and	“Workspace.”	Leave	both	options	as	“Local	to	Project.”	A	project	explorer
window	should	appear	as	in	Fig.	11.3.	As	can	be	seen	in	this	figure,	Vivado
project	properties	are	transferred	to	the	SDK	as	well.
The	next	step	in	the	SDK	is	programming	the	microcontroller	in	C	language.

Therefore,	we	will	generate	a	new	project	under	Xilinx	SDK	by	pressing	File	→
New	Application	Project.	Let’s	name	this	project	Basys3_mcs.	Then,	the	window
should	look	like	as	in	Fig.	11.4.	We	will	press	“Next”	and	select	a	project
template.	Here,	we	will	select	the	predefined	“Hello	World”	project	and	modify
it	to	fit	our	needs.

FIGURE	11.3	Xilinx	SDK	project	explorer	window.

FIGURE	11.4	Xilinx	SDK	new	project	window.

Listing	11.6	C	Code	for	the	Xilinx	SDK	Project

To	modify	the	“Hello	World”	project,	go	to	helloworld.c	source	file	located
under	the	directory	Basys3_mcs→	src.	Replace	the	source	code	as	in	Listing
11.6.	Here,	predefined	C	functions	are	used	for	almost	all	operations.
As	the	modified	C	code	is	saved,	the	Xilinx	SDK	generates	an	executable	and

linkable	formatted	file	Basys3_msc.elf.	We	can	use	this	file	in	Vivado	to
associate	it	to	the	Verilog	description.	To	do	so,	go	to	Vivado	again	and	select
Tools	→	Associate	ELF	files.	Ignore	the	upcoming	warning	window	by	pressing
Continue.	A	pop-up	window	will	appear	titled	as	Associate	ELF	File.	Here,	we

should	add	the	generated	elf	file	under	the	Xilinx	SDK	to	our	Vivado	project.	To
do	so,	click	on	browse	under	Design	sources	and	add	the	generated	elf	file	under
H:/Xilinx_Projects/project_1/project_1.sdk/Basys3_msc/Debug.	The	add
window	should	look	like	as	in	Fig.	11.5.	Final	view	of	the	Associate	ELF	File
window	should	look	like	as	in	Fig.	11.6.
We	should	update	the	generated	bitstream	after	adding	elf	file	to	the	project.

Click	on	Generate	Bitstream	to	regenerate	your	bit	file	with	the	embedded	C
code	in	it.	Once	generation	finishes,	open	hardware	manager	and	program	your
FPGA	as	explained	in	Sec.	4.6.2.	As	the	program	is	run	on	the	Basys3	board,	a
switch	should	turn	on	and	off	the	corresponding	LED.

FIGURE	11.5	Adding	the	elf	file	to	the	Vivado	project.

FIGURE	11.6	Final	view	of	the	adding	ELF	file	window.

11.4	Soft-Core	Microcontroller	Applications
Different	from	previous	chapters,	we	will	refer	the	reader	to	successful	soft-

core	microcontroller	applications	by	other	researchers	in	this	section.	For	this
purpose,	the	first	repository	to	look	for	is	by	Tracton	as	mentioned	in	Sec.
11.2.4.	Tracton	offers	valuable	applications	on	the	PicoBlaze	microcontroller.
As	for	MicroBlaze-based	applications,	we	can	direct	the	reader	to	the	Digilent
website.	One	good	application	offered	by	Digilent	is	in	[43].	There	may	also	be
other	websites	offering	good	applications	of	soft-core	microcontrollers.	It	is
worth	looking	at	them.

11.5	FPGA	Building	Blocks	Used	in	Soft-Core
Microcontrollers
Soft-core	microcontrollers	are	implemented	using	standard	FPGA	building

blocks.	Therefore,	analyzing	their	implementation	details	give	insight	to	the
reader.	Let’s	start	with	the	PicoBlaze	implementation	in	Sec.	11.2.4.	This
application	requires	233	LUTs	and	227	flip-flops.	On	the	other	hand,	the
MicroBlaze	MCS	implementation	in	Sec.	11.3.2	requires	654	LUTs,	290	flip-
flops,	and	four	block	RAMs.	As	can	be	seen	here,	both	implementations	fit	to
the	FPGA	on	the	Basys3	board	without	any	difficulty.	Hence,	the	user	can	add

extra	peripherals	to	the	Artix-7	FPGA	besides	fundamental	implemented	blocks.
Available	resources	on	the	Artix-7	FPGA	also	allow	embedding	multiple
microcontrollers	for	parallel	operation.	If	we	compare	PicoBlaze	and
MicroBlaze	MCS,	we	can	see	that	PicoBlaze	requires	almost	one-third	of	the
LUT	used	by	MicroBlaze.	Both	microcontrollers	require	similar	number	of	flip-
flops.	Note	that	the	block	RAM	is	inherently	added	by	the	MicroBlaze	MCS.	On
the	other	hand,	PicoBlaze	has	its	own	RAM	block.

11.6	Summary
FPGAs	can	be	used	to	implement	soft-core	microcontrollers	available	either

as	an	IP	block	or	a	HDL	description.	This	opens	up	a	way	to	design	custom-
made	microcontroller	systems.	Hence,	desired	or	unconventional	peripherals	can
be	added	to	the	microcontroller	easily	via	the	FPGA	design.	In	this	chapter,	we
explored	methods	for	such	implementations.	Note	that	the	coverage	of	the	topic
in	this	chapter	can	be	considered	introductory.	The	reader	can	check	available
references	to	master	this	topic.	Xilinx	also	offers	a	different	platform	called
system	on	chip	(SoC)	which	incorporates	the	hardcore	processors	and	FPGA
chips.	One	recent	SoC	is	Zynq	family	which	has	ARM	Cortex	A9	processors
with	the	Artix-7	FPGAs.	This	SoC	family	deserves	special	consideration.
Therefore,	we	suggest	the	reader	to	explore	it	for	more	advanced	applications.

11.7	Exercises
11.1			Modify	the	application	in	Sec.	11.2.4	such	that	the	LED	turns	on
when	the	corresponding	switch	goes	to	logic	level	0.	The	LED	turns	off
when	the	switch	goes	to	logic	level	1.
11.2			Create	an	IP	block	for	the	basic	microcontroller	in	Sec.	11.2.4	such
that	the	same	application	can	be	implemented	in	VHDL.
11.3			Modify	the	application	in	Sec.	11.3.2	such	that	only	four	LEDs	and
switches	are	used	in	implementation.
11.4			Redo	Exercise	11.3	in	VHDL.
11.5			The	FPGArduino	project	is	a	good	example	of	implementing	Arduino
as	a	soft-core	microcontroller	[44].	Follow	the	steps	there	to	implement
Arduino	on	the	Arty	board.
11.6			Imagination	Technologies	offers	a	soft-core	processor	on	its	website
[45].	Follow	the	steps	there	to	implement	this	microcontroller	on	the
Basys3	board.

11.7			ARM	offers	the	core	of	its	Cortex	M0	processor	in	[46].	Follow	the
steps	there	to	implement	this	microcontroller	on	the	Basys3	board.

CHAPTER	12

Digital	Interfacing

Adigital	system	communicates	with	outside	world	through	its	analog	and
digital	interface.	This	chapter	focuses	on	digital	interfacing	for	the	field-
programmable	gate	array	(FPGA)	design.	Hence,	we	will	first	cover	serial
communication	protocols	as	universal	asynchronous	receiver/transmitter
(UART),	serial	peripheral	interface	(SPI),	and	inter-integrated	circuit	I2	C.	Then,
we	will	explore	video	graphics	array	(VGA)	interfacing	to	connect	a	display	to
the	FPGA.	Afterward,	we	will	cover	universal	serial	bus	(USB)	and	ethernet
connections.	We	will	provide	Verilog	and	VHDL	descriptions	to	digital
interfacing	concepts	except	ethernet.	For	it,	we	will	benefit	from	an	available	IP
block	in	Vivado.	To	explain	digital	interfacing	concepts	clearly,	we	provide
related	applications	in	this	chapter.

12.1	Universal	Asynchronous	Receiver/Transmitter
A	universal	asynchronous	receiver/transmitter	(UART)	is	a	digital

communication	protocol	for	two	or	more	devices.	We	will	focus	only	on	UART
communication	between	two	devices	in	this	book.	Hence,	one	device	will	be	the
transmitter;	the	other	will	be	the	receiver.	Communication	is	done	by	sending
and	receiving	data	asynchronously	between	the	transmitter	and	receiver.	Being
asynchronous,	the	UART	does	not	need	a	common	clock	between	the	transmitter
and	receiver.	Thus,	connected	devices	can	work	independently.	The	serial	pin	of
the	transmitter	is	generally	called	transmit	(TX).	The	corresponding	receiver	pin
is	generally	called	receive	(RX).	The	connection	between	the	transmitter	and
receiver	is	established	by	physically	wiring	these	two	pins.
The	UART	communication	can	be	established	between	different	devices.	We

will	especially	focus	on	the	one	between	the	FPGA	board	of	interest	(Basys3	or
Arty)	and	PC.	To	do	so,	we	will	develop	hardware	description	language	(HDL)
description	of	transmitter	and	receiver	modules.	The	transmitter	module	will	be
basically	a	shift	register	that	loads	parallel	data	and	shifts	it	in	a	specific	rate

through	TX	pin	of	the	device.	The	receiver	module	will	convert	the	received
serial	data	through	RX	pin	into	parallel	form	to	be	processed	by	the	receiver.
Before	dealing	with	HDL	descriptions,	let’s	first	focus	on	the	working	principles
of	UART.

12.1.1	Working	Principles	of	UART
To	use	a	UART,	we	should	understand	how	it	works.	Therefore,	we	introduce

data	format,	timing,	transmission,	and	reception	operations	in	this	section.	These
will	help	us	forming	HDL	descriptions	in	the	following	section.

12.1.1.1	Data	Format
Data	is	transmitted	in	terms	of	packages	in	the	UART.	Data	framing	of	a

UART	package	begins	with	a	start	bit,	followed	by	seven	to	eight	data	bits
optionally	attached	by	a	parity	bit	(explained	in	Sec.	8.6),	and	concluded	by	one
or	two	stop	bits.	This	setup	can	be	seen	in	Fig.	12.1.

FIGURE	12.1	Data	framing	of	a	UART	package	with	eightbit	data.

12.1.1.2	Timing
Although	the	UART	works	in	asynchronous	manner,	the	transmitter	and

receiver	should	have	same	timing	values	to	transmit	and	receive	data.	In	other
words,	the	data	can	be	transmitted	in	asynchronous	manner.	However,	as	the
transmission	starts,	the	receiver	should	know	the	duration	of	each	pulse	in	the
UART	package.	This	is	set	by	the	baud	rate	which	determines	the	timing.	The
baud	rate	is	denoted	by	bits	per	second	(bps).	For	example,	a	2400-bps	indicates
a	416-µs	bit	width	(or	period)	in	the	UART	transmission.

12.1.1.3	Transmission	Operation
We	can	explain	the	transmission	operation	in	the	UART	as	a	state	machine.

We	will	explain	this	state	machine	in	detail	in	Sec.	12.1.2.	Here,	let’s	briefly
summarize	it.	The	TX	pin	should	be	at	logic	level	1	when	the	transmitter	is	in	idle
mode.	Once	transmission	starts,	a	falling	edge	is	created	on	the	data	transmit	line
which	wakes	up	the	receiver.	Afterward,	the	clock	is	set	according	to	the	baud

rate	and	all	bits	are	sent	one	by	one	in	every	clock	cycle	in	the	transmitter	side.
The	receiver	should	have	the	same	baud	rate	for	receiving	transmitted	bits
sequentially.	As	the	transmit	operation	finalizes,	the	TX	pin	should	be	set	to	logic
level	1	for	one	or	two	bit	widths	to	inform	the	receiver	that	the	transmission	is
done.	These	are	also	called	stop	bit(s).	The	number	of	stop	bits	and	usage	of
parity	bit	should	also	be	predetermined	so	that	the	transmitter	and	receiver	have
same	settings.

12.1.1.4	Reception	Operation
We	can	explain	the	reception	operation	in	the	UART	as	another	state	machine.

Although	we	will	explain	this	state	machine	in	Sec.	12.1.2,	let’s	briefly
summarize	it	here.	The	receiver	will	be	in	ready	state	initially.	When	a	falling
edge	signal	(start	bit)	comes	to	RX	pin,	it	starts	receiving	data	bits	sequentially.
To	do	so,	the	receiver	should	have	an	internal	timer	with	the	predetermined	baud
rate	as	in	the	transmitter.	After	receiving	start	bit,	the	timer	waits	for	a	certain
time	to	sample	the	first	data	bit.	This	offset	allows	starting	the	sampling	process
in	the	middle	of	the	first	data	pulse.	Note	that	although	data	is	sent	as	logic
levels	1	and	0	by	the	transmitter,	these	are	converted	to	analog	pulse	signals.
Hence,	the	sampling	operation	converts	the	received	analog	signal	to	logic	level
0	or	1	again.	Afterward,	we	perform	the	sampling	operation	at	each	successive
time	period	to	recover	data	bits.	As	all	bits	are	received	this	way,	the	receiver
checks	the	parity	bit	within	the	received	data	(if	the	protocol	consists	one).	When
stop	bit(s)	is	received,	the	receiver	turns	back	to	ready	state	waiting	to	receive
the	next	data	packet.

12.1.2	UART	in	Verilog
We	can	describe	the	transmit	and	receive	operations	as	two	separate	modules

in	Verilog.	Let’s	start	with	the	transmitter	module.

12.1.2.1	The	Transmitter	Module
The	Verilog	description	of	the	transmitter	module	is	presented	in	Listing	12.1.

This	module	has	three	inputs	as	send,	data,	and	clk.	send	is	used	to	trigger
starting	a	transmit	operation.	data	carries	data	to	be	transmitted.	clk	is	used	to
enter	the	100-MHz	clock	of	the	FPGA	board	(Basys3	or	Arty)	to	the	module.
The	transmitter	module	has	two	outputs	as	ready	and	tx.	When	ready	is	at	logic
level	1,	this	indicates	that	the	module	is	ready	to	transmit	data.	Output	tx	should
be	directly	connected	to	TX	pin	of	the	device.
The	working	principles	of	the	transmitter	module	(as	a	state	machine)	are	as

follows.	Within	the	module,	the	baud	rate	is	defined	as	a	parameter	and	set	to
9600	bps	by	default.	Here,	baud_timer	calculates	the	number	of	clock	cycles
needed	for	a	particular	baud	rate	by	dividing	the	main	clock	frequency	to	the
baud	rate.	The	transmitter	module	has	three	states	as	RDY,	LOAD_BIT,	and
SEND_BIT.	RDY	state	indicates	that	the	module	is	ready	to	send	next	data	package.
When	in	the	LOAD_BIT	state,	the	data	is	loaded	to	tx	output.	Finally,	SEND_BIT
state	indicates	that	the	data	is	being	transmitted.	Initial	state	of	the	module	is	set
as	RDY.	Hence,	it	waits	for	the	send	trigger.	When	send	is	set	to	logic	level	1,	the
module	loads	data	with	a	leading	zero	and	a	trailing	one	to	txData.	Afterward,
the	module	switches	to	LOAD_BIT	state.	Here,	the	first	bit	to	be	transmitted	(LSB
in	our	configuration)	is	loaded	to	txBit.	Then,	the	module	waits	for
bit_index_max	clock	cycles	in	SEND_BIT	state.	Then,	it	switches	back	to
LOAD_BIT	state	to	load	the	next	bit	to	be	transmitted.	This	operation	is	repeated
until	the	last	stop	bit	is	transmitted.	At	the	end	of	the	transmission	operation,	the
state	is	set	as	RDY.	Hence,	the	transmitter	module	starts	waiting	for	the	next	send
trigger.	In	this	module,	txBit	is	wired	to	tx	and	ready	is	set	as	a	conditional
assignment	such	that	when	state	equals	to	RDY,	it	is	at	logic	level	1,	otherwise	0.

12.1.2.2	The	Receiver	Module
The	Verilog	description	of	the	receiver	module	is	presented	in	Listing	12.2.

The	module	has	two	inputs	as	clk	and	rx.	clk	is	used	to	enter	the	100-MHz
clock	of	the	FPGA	board	(Basys3	or	Arty)	to	the	module	as	in	the	transmitter
module.	rx	should	be	directly	connected	to	RX	pin	of	the	device.	Through	it,	the
receiver	module	listens	for	a	possible	incoming	package.	The	receiver	module
has	four	outputs	as	data,	parity,	ready,	and	error.	data	represents	the	received
data.	parity	shows	the	received	parity	bit.	ready	indicates	that	the	receive
operation	is	complete.	Finally,	error	shows	if	the	data	package	is	received	with
or	without	error.
The	working	principles	of	the	receiver	module	(as	a	state	machine)	are	as

follows.	Within	the	module,	the	baud	rate	is	defined	as	a	parameter	and	set	to
9600	bps	similar	to	the	transmitter	module.	As	in	the	transmitter	module,
baud_timer	calculates	the	number	of	clock	cycles	needed	for	a	particular	baud
rate	by	dividing	the	main	clock	frequency	to	baud	rate.	The	receiver	module	has
five	states	as	RDY,	START,	RECEIVE,	WAIT,	and	CHECK.	The	state	machine	starts
initially	at	RDY	state,	which	indicates	that	the	module	is	ready	to	receive	the	next
data	package.	Hence,	it	listens	to	the	RX	pin	through	rx	at	every	rising	edge	of
the	clock.	When	rx	goes	to	logic	level	0,	the	state	machine	goes	to	START.	There,
it	waits	for	half	of	the	baud_timer	period	where	it	ends	up	in	the	middle	of	the

start	signal.	First	data	bit	will	be	ready	to	be	read	after	waiting	for	baud_timer
period.	WAIT	state	acts	as	a	delay	station	in	which	the	receiver	waits	for
baud_timer	period.	Then,	it	returns	to	RECEIVE	state	unless	ready	is	at	logic
level	1.	In	RECEIVE	state,	the	incoming	data	is	sampled.	Then,	bitIndex	is
incremented	by	one	and	checked	whether	it	has	reached	the	maximum	value
(eight	for	our	case).

Listing	12.1	Verilog	Description	of	the	UART	Transmitter	Module

Listing	12.2	Verilog	Description	of	the	UART	Receiver	Module

Since	we	have	eight	data	bits	and	a	parity	bit,	the	state	machine	has	to	switch
to	CHECK	state	after	all	bits	are	received.	Even	parity	check	is	performed	in	CHECK
state.	If	the	received	data	package	is	consistent	with	parity	bit,	then	ready	is	set
to	logic	level	1	and	the	next	state	is	set	to	WAIT.	Received	data	and	parity	values
in	rxdata	are	written	to	data	and	parity	outputs.	If	the	parity	check	fails,	then
error	and	ready	go	to	logic	level	1.	data	is	filled	with	logic	level	1.	Then,	the
reception	operation	ends.	The	receiver	turns	back	to	RDY	state	waiting	to	receive
the	next	data	package.

12.1.3	UART	in	VHDL
As	in	Verilog,	we	can	describe	the	transmit	and	receive	operations	in	two

separate	modules	in	VHDL.	Let’s	start	with	the	transmitter	module.

12.1.3.1	The	Transmitter	Module
The	VHDL	description	of	the	transmitter	module	is	presented	in	Listing	12.3.

In	this	description,	we	tried	to	keep	the	input,	output	definitions,	and	state	names
the	same	as	in	Listing	12.1.	Hence,	the	reader	can	associate	the	working
principles	of	the	corresponding	Verilog	description	with	the	VHDL	description
here.

12.1.3.2	The	Receiver	Module
We	provide	the	VHDL	description	of	the	receiver	module	in	Listing	12.4.

Again,	this	module	has	the	same	working	principles	as	its	Verilog	version	in
Listing	12.1.

12.1.4	UART	Applications
The	UART	needs	an	RS-232	port	for	communication.	Unfortunately,	Basys3

and	Arty	boards	do	not	have	such	a	port.	However,	they	share	the	micro	USB
port	for	the	UART	communication	as	mentioned	in	Chap.	3.	To	run	UART
applications	in	this	section,	the	reader	should	have	a	terminal	software	such	as
RealTerm	on	the	host	PC.	Connect	your	Basys3	board	to	the	PC	through	its	USB
cable	and	turn	the	board	on.	Find	the	assigned	COM	port	number	by	looking	at
the	device	manager.	Here,	we	assume	that	the	application	is	run	on	a	PC	with
Microsoft	Windows	operating	system.	Please	consult	related	resources	for	other
operating	systems.	On	the	terminal,	set	the	baud	rate	to	9600	bps;	the	COM	port
to	the	one	Basys3	board	connected;	parity	bit	to	“None”;	data	bits	to	eight;	and
stop	bits	to	one.	The	default	demo	implemented	on	the	Basys3	board	includes	a
UART	module.	Through	it,	the	user	can	check	whether	the	connection	has	been
established	between	the	PC	and	Basys3	board.	To	check	it,	press	the	center
button	(btnC)	on	the	Basys3	board.	You	should	see	the	sentence	“BASYS3
GPIO/UART	DEMO!”	on	the	terminal	window.	If	you	press	any	of	the
remaining	four	buttons	on	the	board,	you	should	see	“Button	press	detected!”	on
the	terminal	window.	We	will	use	the	same	setup	for	our	UART	applications
next.

Listing	12.3	VHDL	Description	of	the	UART	Transmitter	Module

Listing	12.4	VHDL	Description	of	the	UART	Receiver	Module

12.1.4.1	Transmitting	Data	from	the	Basys3	Board	to	Host	PC
The	first	UART	application	will	be	on	transmitting	data	from	the	Basys3

board	to	host	PC.	Therefore,	connect	your	board	to	the	host	PC	and	check	the
status	of	connection	as	explained	in	the	previous	section.	Assuming	that
everything	is	set	correctly	and	working	properly,	we	will	implement	our
application.	Therefore,	we	will	build	a	top	module	which	employs	the
transmitter	module	and	transmits	incremental	ASCII	codes	starting	from
hexadecimal	number	41	(corresponding	to	character	A)	when	center	button
(btnC)	is	pressed.	The	top	module	in	Verilog	is	presented	in	Listing	12.5.	The
VHDL	version	of	the	top	module	is	also	given	in	Listing	12.6.
The	transmitter	top	module	has	two	inputs	as	clock	(clk)	and	center	button

(btnC).	These	values	will	be	obtained	from	the	Basys3	board	through	its	XDC
file.	The	top	module	has	one	output	for	the	transmitter	port	of	the	board	as	RsTx.
The	top	module	uses	UART_tx_ctrl	(given	in	Listing	12.1)	and	debounce	(given
in	Listing	9.20)	as	submodules.	Hence,	they	should	be	included	to	the	project.
Note	that	the	baud	rate	for	the	UART_tx_ctrl	module	is	set	to	19200	bps	here.
The	top	module	has	three	states	as	TX_WAIT_BTN,	TX_SEND_CHAR,	and
TX_SEND_WAIT.	Therefore,	we	can	explain	its	working	principles	as	a	state
machine.	The	top	module	is	initially	at	TX_WAIT_BTN	state.	Here,	it	waits	for	a
button	press.	When	the	button	is	pressed,	the	state	machine	enters	TX_SEND_CHAR

state.	Here,	initStr	is	loaded	to	uartData	to	be	sent	and	initStr	is
incremented	by	one.	Therefore,	the	next	character	in	ASCII	table	(Table	6.6)	is
reached.	In	TX_SEND_CHAR	state,	uartSend	(connected	to	send	in	the	transmit
module)	goes	to	logic	level	1.	When	the	state	machine	is	in	state	TX_SEND_WAIT,
it	waits	for	the	transmitter	to	send	loaded	data.	When	uartRdy	is	at	logic	level	1,
the	state	machine	turns	back	to	state	TX_WAIT_BTN.

Listing	12.5	Verilog	Description	of	the	Transmitter	Top	Module

Listing	12.6	VHDL	Description	of	the	Transmitter	Top	Module

To	run	this	application,	we	should	form	a	project	in	Vivado	containing	HDL
description	files	for	the	top	module	and	submodules	used	within	it.	Besides,	we
should	also	add	the	modified	XDC	file	to	this	project.	For	more	information	on
this	issue,	please	see	Chap.	4.	As	we	generate	the	bitstream	and	embed	it	on	the
Basys3	board,	it	is	ready	to	be	tested.	Now,	open	the	terminal	program	on	the
host	PC.	Set	your	baud	rate	to	19200	bps,	select	no	parity	bit	option	and	one	stop
bit.	As	btnC	is	pressed	on	the	Basys3	board,	you	should	see	character	A	on	the
terminal	window.	As	we	press	btnC	again,	the	next	character	in	the	ASCII	table
should	be	seen	on	the	terminal	window.

12.1.4.2	Receiving	Data	to	the	Basys3	Board	from	Host	PC
The	next	UART	application	will	be	on	receiving	data	to	the	Basys3	board

from	host	PC.	Within	this	application,	we	will	turn	on	LEDs	on	the	Basys3
board	by	received	data.	Top	module	for	this	application	is	presented	in	Listing
12.7	in	Verilog.	The	corresponding	VHDL	description	is	given	in	Listing	12.8.
The	receiver	top	module	has	two	inputs	as	clock	(clk)	and	receive	(RsRx).	It

has	one	output	to	adjust	LEDs	on	the	Basys3	board	as	the	vector	led.	The	input
clk	will	be	obtained	and	the	output	led	will	be	fed	to	LEDs	on	the	Basys3	board
through	its	XDC	file.	The	receiver	module	(UART_rx_ctrl)	in	Listing	12.2	is
used	as	a	submodule	here.	The	baud	rate	for	this	submodule	is	set	to	19200	bps.
We	can	represent	operations	in	the	top	module	as	a	state	machine	with	three
states	as	RX_RDY,	RX_WAIT,	and	RX_DATARDY.	When	in	the	RX_RDY	state,	the	state
machine	waits	for	data_ready	to	switch	from	logic	level	1	to	0.	As	this
transition	occurs,	the	state	machine	goes	to	RX_WAIT	until	the	module	receives

the	data.	When	the	data	is	received,	the	state	machine	goes	to	RX_DATARDY.
Meanwhile,	data_ready	goes	to	logic	level	1	again.	At	the	same	time,	the
received	data	is	written	to	the	first	eight	bits	of	led.	The	parity	bit	is	represented
as	the	ninth	led	entry.	If	a	transmission	error	occurs,	it	is	indicated	in	the	tenth
bit	of	led.	Last	six	bits	of	led	are	used	to	show	how	many	packages	have	been
received	from	the	host	PC.	To	run	this	application,	please	follow	the	steps
explained	in	the	previous	application.	Since	the	receiver	module	is	capable	of
receiving	the	parity	bit,	do	not	forget	to	select	even	parity	on	your	terminal
settings.

12.2	Serial	Peripheral	Interface
The	serial	peripheral	interface	(SPI)	is	a	digital	communication	protocol	for

two	or	more	devices	as	the	UART.	In	this	book,	we	will	focus	only	on	the	SPI
communication	between	two	devices.	Hence,	one	device	will	be	the	transmitter
and	the	other	receiver.	Different	from	the	UART,	the	SPI	is	a	synchronous
communication	protocol.	Besides,	communication	between	the	transmitter	and
receiver	is	duplex.	In	other	words,	data	is	transmitted	and	received	at	the	same
time	in	the	SPI.	Therefore,	the	SPI	communication	uses	four	wires.	Two	of	these
wires	are	for	data	transfer.	One	wire	is	used	for	the	common	clock	signal	(for
synchronization).	The	fourth	wire	is	used	to	enable	(select)	signal	to	be
explained	in	Sec.	12.2.1.

Listing	12.7	Verilog	Description	of	the	Receiver	Top	Module

Being	synchronous,	the	SPI	needs	a	common	clock	signal	generated	by	either
the	transmitter	or	receiver.	Clock	generating	side	is	called	leader.	The	other	side
is	called	follower.	These	roles	are	generally	called	master	and	slave	in	literature.
However,	we	prefer	leader	and	follower	naming	in	this	book.	Therefore,	we	will
use	the	terms	leaderfollower	instead	of	master-slave	from	this	point	on.	As	a
result	we	can	have	leader-transmitter,	leader-receiver,	follower-transmitter,	and
follower-receiver	options.	We	will	cover	all	these	next.

12.2.1	Working	Principles	of	SPI

The	working	principles	of	the	SPI	are	simpler	than	the	UART.	To	understand
them,	we	introduce	the	data	format,	connection	diagram,	transmission	and
reception	operations,	and	timing	in	this	section.	These	will	help	us	forming	HDL
descriptions	for	transmission	and	reception	next.

Listing	12.8	VHDL	Description	of	the	Receiver	Top	Module

12.2.1.1	Data	Format
Different	from	the	UART,	data	packet	size	is	not	constant	in	the	SPI.	This	is

an	advantage	since	the	user	can	select	the	packet	size	as	he	or	she	desires.
Moreover,	the	dedicated	common	clock	and	enable	signals	avoid	using	start	and
stop	bits	in	the	UART.	The	only	requirement	here	is	the	need	for	determining	the
data	packet	size.	Hence,	the	transmitter	and	receiver	can	understand	each	other.

12.2.1.2	Connection	Diagram
The	SPI	uses	a	dedicated	clock	line,	two	data	lines	(one	for	transmitter,	one

for	receiver),	and	a	select	(enable)	line	as	mentioned	in	the	previous	section.	We
provide	the	connection	diagram	between	two	devices	using	these	lines	in	Fig.
12.2.	Here,	the	clock	signal	is	denoted	by	SCK.	The	leader	output,	follower	input
is	denoted	by	MOSI.	The	leader	input,	follower	output	is	denoted	by	MISO.	Select
is	denoted	by	SS	which	is	used	by	the	leader	to	wake	up	the	follower.	The	select
line	is	also	used	when	more	than	one	follower	is	connected	to	a	single	leader.

FIGURE	12.2	SPI	connection	diagram	between	the	leader	and	follower.

12.2.1.3	Transmission	and	Reception	Operations
In	the	SPI,	the	data	transmission	and	reception	is	controlled	by	the	leader

through	SCK	and	 	signals.	When	there	is	no	transmission,	 	stays	at	logic
level	1	and	SCK	stays	either	at	logic	level	0	or	1	depending	on	the	SPI	mode.	The
modes	of	the	SPI	and	their	timing	diagrams	will	be	discussed	later	in	Sec.
12.2.1.4.	The	SPI	communication	starts	when	the	leader	wakes	the	follower	by
setting	 	to	logic	level	0.	Next,	the	leader	and	follower	start	interchanging	data
in	every	clock	cycle	set	by	SCK.	Here,	either	the	leader	sends	a	bit	through	MOSI

line	or	the	follower	sends	a	bit	through	MISO	line.	The	SPI	mode	also	determines
if	data	will	be	sent	on	the	rising	or	falling	edge	of	SCK.	After	all	bits	are
transferred,	the	common	clock	stops	and	leader	deselects	the	follower	by
changing	 	to	logic	level	1.

12.2.1.4	Timing
As	mentioned	previously,	SCK	is	generated	by	the	leader	and	fed	to	the

follower.	Here,	SCK	depends	on	the	maximum	data	rate	of	the	transmitter	and
receiver.	Hence,	the	device	with	the	lowest	rate	defines	its	limit.	Besides
frequency,	the	leader	also	adjusts	the	polarity	and	phase	of	clock	denoted	by
CPOL	and	CPHA,	respectively.	Four	possible	combinations	of	CPOL	and	CPHA	are
presented	in	Fig.	12.3.	These	combinations	are	called	modes	of	the	SPI.

FIGURE	12.3	SPI	communication	timing	diagram.

TABLE	12.1	SPI	Modes	in	Tabular
Form	Based	on	Clock	Operation

We	can	briefly	summarize	the	SPI	modes	presented	in	Fig.	12.3	and	in	Table
12.1.	Here,	each	operation	in	the	corresponding	mode	is	summarized	based	on
the	clock.	For	more	information	on	the	SPI	modes,	please	see	[47].

12.2.2	SPI	in	Verilog
We	can	describe	the	transmit	and	receive	operations	(for	the	leader	and

follower)	as	separate	modules	in	Verilog.	Let’s	start	with	transmitter	modules.

12.2.2.1	Transmitter	Modules
As	explained	previously,	either	the	leader	or	follower	can	be	a	transmitter.

Therefore,	we	should	form	a	different	description	for	each	option.	The	Verilog
description	of	the	leader-transmitter	setup	is	presented	in	Listing	12.9.	Inputs	to
this	module	are	clock	(clk),	data	to	be	sent	(data),	and	send	event	trigger	(send).
The	outputs	of	this	module	are	sck,	mosi,	ss,	and	busy.	The	first	three	of	these
are	directly	associated	with	the	SPI	lines.	The	fourth	output	shows	if	the	module
is	busy	while	transmitting	data.	Within	the	module,	the	data	length	to	be	sent	is
set	as	a	parameter.	The	frequency	division	is	applied	to	the	input	clock	so	that
sck	is	set	at	2	MHz.	CPOL	and	CPHA	are	set	to	zero.	Thus,	all	changes	are
performed	on	the	falling	edge	of	sck.
The	working	principle	of	the	leader-transmitter	module	can	be	explained	as

follows.	The	module	is	a	state	machine	triggered	in	every	falling	edge	of	sck.	In
other	words,	the	data	on	the	mosi	line	does	not	change	while	sck	is	at	logic	level
1.	The	state	machine	is	initially	at	RDY	state.	The	transmission	of	data	starts	when
send	goes	to	logic	level	1.	The	state	changes	to	START	while	index	is	set	to	the
first	bit	of	data	and	busy	goes	to	logic	level	1.	In	START	state,	the	leader	module
sets	ss	to	logic	level	0	to	wake	up	the	follower.	Then,	the	first	bit	of	the	data	is
loaded	to	mosi	line	and	index	is	decreased	by	one.	The	next	state	is	TRANSMIT	in
which	index	is	decreased	by	one	and	the	corresponding	bit	of	data	vector	is	sent
to	the	output	via	mosi	step	by	step.	When	index	equals	to	zero,	iteration	ends.
The	state	machine	switches	to	STOP	state.	Then,	busy	goes	to	logic	level	0	and	ss
goes	to	logic	level	1.	Next,	the	state	machine	turns	back	to	RDY	state	and	waits
for	another	send	trigger.

Listing	12.9	Verilog	Description	of	the	SPI	Leader-Transmitter	Module

Listing	12.10	Verilog	Description	of	the	SPI	Follower-Transmitter	Module

The	Verilog	description	of	the	follower-transmitter	module	is	presented	in

Listing	12.10.	Since	this	is	the	follower	module,	it	has	inputs	sck,	ss,	and	data.
The	outputs	of	the	module	are	miso	and	busy.	Timing	modes	CPOL	and	CPHA	are
selected	as	zero.	Thus,	all	changes	are	performed	on	the	falling	edge	of	sck.
The	working	principle	of	the	follower-transmitter	module	(as	a	state	machine)

will	be	similar	to	the	leader-transmitter	module.	However,	there	are	major
differences	as	follows.	The	state	machine	is	initially	at	RDY	state.	It	is	triggered
by	the	falling	edge	of	sck	which	is	generated	by	the	leader-receiver.	If	ss	is	at
logic	level	0,	then	busy	goes	to	logic	level	1.	The	first	bit	of	the	data	vector	is
loaded	to	mosi.	Then,	the	state	machine	goes	to	the	state	TRANSMIT.	Afterward,
the	module	starts	sending	data.	When	index	equals	to	0,	it	indicates	that	all	data
bits	have	been	transmitted.	Next,	the	state	machine	goes	to	STOP	state.	It	resets
index	and	sets	busy	to	logic	level	0.	Afterward,	the	state	machine	turns	back	to
RDY	state	and	waits	for	ss	to	go	logic	level	0	for	the	next	transmission	cycle.

12.2.2.2	Receiver	Modules
As	in	the	transmitter,	either	the	leader	or	follower	can	act	as	a	receiver.

Therefore,	we	will	analyze	both	scenarios	in	this	section.	Let’s	start	with	the
follower-receiver	module	in	Listing	12.11.	Inputs	to	this	module	are	sck,	ss,	and
mosi	which	are	directly	related	to	the	corresponding	SPI	signals.	The	outputs	of
the	module	are	data,	busy,	and	ready.	Here,	busy	is	at	logic	level	1	when	data	is
being	received.	When	ready	goes	to	logic	level	1,	the	received	data	will	be
available	in	data	vector.	Here,	the	data	length	is	defined	as	a	parameter	so	that	it
can	be	changed	depending	on	the	application.
The	working	principles	of	the	follower-receiver	module	(as	a	state	machine)

are	as	follows.	Initially,	data_temp	is	set	to	the	logic	level	0	and	index	is	set	to
the	address	of	the	first	bit	in	data	vector	(data_length-1).	The	state	machine	has
three	states:	RDY,	RECEIVE,	and	STOP.	RDY	is	the	initial	state	in	which	module
checks	for	ss	to	become	logic	level	0	at	every	rising	edge	of	sck.	Once	ss	goes
to	logic	level	0,	data_temp	is	set	to	receive	the	first	data	bit	from	mosi.
Afterward,	index	is	decreased	by	one;	busy	goes	to	logic	level	1;	ready	goes	to
logic	level	0;	and	the	state	machine	goes	to	RECEIVE	state.	Then,	the	module
receives	data	bits	from	mosi	in	every	clock	cycle	like	a	shift	register.	When
index	reaches	zero,	the	state	machine	goes	to	STOP	state.	In	this	state,	busy	goes
to	logic	level	0;	the	received	data	is	written	to	the	data	vector;	data_temp	is	set
to	logic	level	0;	index	is	set	to	the	address	of	the	first	bit	of	data.	In	the	next
cycle,	the	state	machine	turns	back	to	RDY	state	and	waits	for	another	falling	edge
on	ss	to	receive	the	next	data	package.	As	a	reminder,	the	follower-receiver
module	should	work	together	with	the	leader-transmitter	module.

The	leader-receiver	module	is	presented	in	Listing	12.12.	Here,	the	clock
(clk),	MISO	line	(miso),	and	receive	trigger	(get)	are	inputs	of	the	module
which	are	directly	related	to	the	corresponding	SPI	signals.	The	outputs	of	the
module	are	data,	sck,	ss,	busy,	and	ready.	The	data	length	is	defined	as	a
parameter	of	flexibility.	The	leader-receiver	module	starts	listening	the	follower-
transmitter	when	get	goes	to	logic	level	1.	While	receiving	data,	busy	stays	at
logic	level	1.	Once	all	bits	are	received,	ready	goes	to	logic	level	1.	Then,	the
received	data	can	be	obtained	from	the	data	vector.
The	working	principles	of	the	leader-receiver	module	(as	a	state	machine)	are

as	follows.	Within	the	module,	the	frequency	division	is	applied	to	the	main
clock	to	have	2-MHz	sck.	The	state	machine	has	three	states:	RDY,	RECEIVE,	and
STOP.	In	RDY	state,	the	module	checks	for	a	receive	trigger	in	every	rising	edge	of
sck.	Once	the	module	is	triggered,	the	state	machine	goes	to	RECEIVE	state.
Then,	ss	goes	to	logic	level	0;	busy	goes	to	logic	level	1;	ready	goes	to	logic
level	0;	all	bits	of	data_temp	are	set	to	logic	level	0;	and	(data_length-1)	is
loaded	to	index.	In	RECEIVE	state,	data	bits	are	received	from	the	follower	in
every	rising	edge	of	sck.	Meanwhile,	index	is	decreased	until	it	reaches	zero.
Afterward,	the	state	machine	goes	to	STOP	state.	Here,	busy	goes	to	logic	level	0;
ready	goes	to	logic	level	1;	ss	goes	to	logic	level	1;	and	the	received	data	is
written	to	the	data	vector.	In	the	next	clock	cycle,	state	machine	turns	back	to
RDY	state	and	waits	for	another	get	trigger	to	receive	the	next	incoming	data.	As
a	reminder,	the	leader-receiver	module	should	work	together	with	the	follower-
transmitter	module.

Listing	12.11	Verilog	Description	of	the	SPI	Follower-Receiver	Module

Listing	12.12	Verilog	Description	of	the	SPI	Leader-Receiver	Module

12.2.3	SPI	in	VHDL
As	in	Verilog,	we	can	describe	the	transmit	and	receive	operations	(for	the

leader	and	follower)	as	separate	modules	in	VHDL.	Let’s	start	with	the
transmitter	modules.

12.2.3.1	Transmitter	Modules
The	VHDL	description	of	the	leader-transmitter	and	follower-transmitter

modules	is	presented	in	Listings	12.13	and	12.14.	In	both	the	descriptions,	we
tried	to	keep	the	input-output	definitions	and	state	names	the	same	as	in	the
corresponding	Verilog	descriptions	presented	in	Listings	12.9	and	12.10.	Hence,
the	reader	can	associate	the	working	principles	of	the	VHDL	and	Verilog
descriptions.

12.2.3.2	Receiver	Modules
The	VHDL	description	of	the	leader-receiver	and	follower-receiver	modules

is	presented	in	Listings	12.15	and	12.16.	As	in	the	transmitter	modules,	we	tried
to	keep	the	input-output	definitions	and	state	names	the	same	as	in	the
corresponding	Verilog	descriptions	in	Listings	12.12	and	12.11.	Hence,	the
reader	can	associate	the	working	principles	of	the	VHDL	and	Verilog
descriptions.

12.2.4	SPI	Application
To	provide	an	actual	application,	we	connect	Digilent’s	ambient	light	sensor

(PmodALS)	module	to	the	Basys3	board.	The	sensor	module	returns	eightbit
data	based	on	the	illumination	level	through	the	SPI.	In	our	application,	we	will
receive	this	data	and	convert	it	to	BCD	form	to	show	it	on	the	sevensegment
display	of	the	Basys3	board.
The	sensor	module	is	connected	to	the	top	six	pins	(1	to	6)	of	the	JB	PMOD

port	on	the	Basys3	board.	Necessary	adjustments	are	done	on	the	XDC	file	to
use	this	pin.	Since	the	sensor	module	is	set	to	work	in	the	follower-transmitter
mode,	we	set	Basys3	to	work	in	the	leader-receiver	mode.	We	provide	the
Verilog	description	of	the	top	module	of	the	SPI	application	in	Listing	12.17.
Unfortunately,	the	naming	on	the	sensor	module	is	different	from	the	standard
SPI	applications.	Please	see	the	Digilent	website	for	more	information	on	this
issue	[48].	Therefore,	 ,	MOSI,	and	SCK	lines	are	denoted	by	cs,	sdo,	and	sck	in
the	top	module.	The	sensor	module	works	with	a	clock	frequency	between	1	and

4	MHz.	This	is	in	line	with	our	spi_leader_transmitter	module	since	the
master	clock	on	the	Basys3	board	(with	100	MHz	rate)	is	divided	to	obtain	a	2-
MHz	clock.	Therefore,	we	can	directly	integrate	it.
The	top	module	in	Listing	12.17	uses	submodules	SPI_leader_	receiver,

binaryto2BCD,	and	sevenseg_driver.	The	binary	to	BCD	converter	and
sevensegment	display	driver	have	been	mentioned	in	Sec.	10.6.	Every	unit	of	the
BCD	converter	is	connected	directly	to	the	sevensegment	display	driver.	The	top
module	can	be	represented	as	a	state	machine	with	two	states.	These	are	TRACK
and	GETIN.	In	TRACK	state,	delay	is	decreased	by	one	in	every	master	clock	cycle
until	it	reaches	zero.	This	time	slot	is	referred	to	as	the	delay	time.	It	is
specifically	introduced	to	keep	the	coherency	of	digits	in	the	sevensegment
display.	When	get	goes	to	logic	level	1,	the	state	changes	to	GETIN	and	the	SPI
module	starts	working.	The	top	module	waits	until	the	SPI	module	does	its	job
and	takes	ready	to	logic	level	1.	Afterward,	get	goes	to	logic	level	0;	delay	is
set	to	its	initial	value	again;	data	from	the	SPI	module	is	written	to	the	light-
data	vector;	and	the	state	turns	back	to	TRACK.

Listing	12.13	VHDL	Description	of	the	SPI	Leader-Transmitter	Module

Listing	12.14	VHDL	Description	of	the	SPI	Follower-Transmitter	Module

Listing	12.15	VHDL	Description	of	the	SPI	Leader-Receiver	Module

Listing	12.16	VHDL	Description	of	the	SPI	Follower-Receiver	Module

Listing	12.17	Verilog	Description	of	the	Top	Module	in	SPI	Application	on
the	Basys3	Board

We	provide	the	VHDL	version	of	the	top	module	in	Listing	12.18.	As	in
previous	applications,	we	kept	the	naming	convention	the	same	between	Verilog
and	VHDL	descriptions.	Hence,	the	reader	can	easily	follow	the	VHDL
description.

12.3	Inter-Integrated	Circuit
Inter-integrated	circuit	(I2	C)	is	the	third	and	final	digital	communication

protocol	we	will	cover	in	this	chapter.	As	in	the	UART	and	SPI,	we	will	first
cover	the	working	principles	of	the	I2	C.	Then,	we	will	implement	its	Verilog
and	VHDL	descriptions.	Finally,	we	will	provide	a	sample	application	using	the
I2	C.

12.3.1	Working	Principles	of	I2	C
The	I2	C	is	a	multi-leader,	multi-follower,	serial	communication	protocol

between	digital	devices.	We	will	focus	only	on	the	I2	C	communication	between
two	devices	in	this	book.	In	this	section,	we	will	cover	the	working	principles	of
the	I2	C	in	terms	of	the	data	format,	connection	diagram,	and	transmission	and
reception	operations.	More	information	on	these	topics	can	be	found	in	[49].

12.3.1.1	Data	Format
In	the	I2	C,	every	follower	has	a	unique	address.	Data	transfer	starts	with	this

address.	When	the	follower	wakes	up	and	acknowledges	back	the	leader,	transfer
continues	with	the	pointer/address	and	data	or	directly	data	is	transferred
depending	on	the	protocol.	The	address	of	a	follower	is	usually	composed	of
seven	bits.	However,	in	some	cases	the	address	can	be	either	eight	or	ten	bits.

Independent	of	the	address,	pointer,	and	data	size,	the	transfer	is	performed	in
terms	of	eightbit	packages.	Each	package	has	seven-bit	address,	pointer,	and	data
and	one-bit	acknowledge	value.	The	receiver	merges	packets	to	extract	data.

12.3.1.2	Connection	Diagram
The	I2	C	data	bus	has	two	wires	called	serial	data	line	(SDA)	and	serial	clock

line	(SCL).	Besides,	all	connected	devices	need	a	common	ground	and	power
line.	As	a	result,	the	I2	C	will	need	four	wires	for	communication.	The
connection	diagram	of	a	generic	I2	C	is	presented	in	Fig.	12.4.	The	SDA	and
SCL	are	bidirectional	lines.	Both	the	lines	are	connected	to	VDD	by	a	pull-up
resistor.	This	means	they	are	at	logic	level	1	when	idle.

FIGURE	12.4	Connection	diagram	of	a	generic	I2	C.

Listing	12.18	VHDL	Description	of	the	Top	Module	in	SPI	Application	on
the	Basys3	Board

Different	from	the	SPI,	every	follower	has	a	unique	address	in	the	I2	C.
Therefore,	the	follower	and	leader	can	be	chosen	over	the	serial	data	line	without
the	need	of	a	select	signal.	Thus,	other	than	power	and	ground	signals,	the	I2	C
bus	has	only	two	wires	connected	to	all	the	devices.	This	advantage	saves	the	pin
usage	compared	to	the	SPI.

12.3.1.3	Transmission	and	Reception	Operations
As	mentioned	in	the	previous	section,	data	on	the	I2	C	communication	is

carried	by	eightbit	packages.	The	leader	starts	the	transmission	by	sending	the
follower	address	and	read/write	decision	bit.	The	follower	with	this	address	on
the	network	wakes	up	and	acknowledges	the	leader	that	it	is	alive	and	ready	to
talk.	Then,	depending	on	the	decision	bit,	the	leader	writes	or	reads	data	from	the
follower.	The	leader	ends	the	talk	by	sending	a	stop	signal.	Figure	12.5	shows
the	complete	timing	diagram	of	the	I2	C	communication.

FIGURE	12.5	I2	C	timing	diagram.

As	can	be	seen	in	Fig.	12.5,	the	leader	starts	transmission	by	a	logic	level	1	to
0	transition	on	SDA	while	SCL	stays	at	logic	level	1.	We	can	call	this	as	the	start
signal.	The	transmission	ends	by	a	logic	level	0	to	1	transition	on	the	SDA	while
SCL	is	at	logic	level	1.	We	can	call	this	as	the	stop	signal.	The	address	of	the
device	and	data	is	transmitted	between	start	and	stop	signals.	After	the	start
signal,	the	leader	sends	the	seven-bit	address	of	the	follower.	Then	R/ 	signal	is
sent,	which	tells	the	follower	if	the	leader	is	going	to	read	or	write	the	data
to/from	the	follower.	This	is	concluded	by	an	acknowledge	signal	from	the
follower.	Next,	the	leader	starts	sending	or	receiving	data	(with	the	MSB	first)
followed	by	an	acknowledge	signal.	There	are	no	restrictions	on	the	number	of
successively	transmitted	data	bits.	The	communication	continues	until	the	leader
sends	the	stop	signal.	Note	that	during	the	acknowledge	signal	the	transmitter
releases	the	SDA	line	and	the	receiver	pulls	the	line	to	logic	level	0	while	SCL	is

at	logic	level	1.	We	will	use	these	descriptions	while	implementing	the	I2	C
module	next.

12.3.2	I2C	in	Verilog
We	provide	the	Verilog	description	of	the	I2	C	leader	module	in	Listing	12.19.

This	module	has	six	inputs	as	clk,	reset_n,	ena,	addr,	rw,	and	data_wr.	clk
corresponds	to	the	clock	signal	to	be	used	in	the	module.	reset_n	indicates	the
active	low	reset.	ena	is	for	the	active-high	enable	signal.	addr	represents	the
address	of	the	follower	to	be	connected	to.	rw	stands	for	the	read/write	input.
When	it	is	at	logic	level	1,	the	module	reads	data.	Otherwise,	the	module	writes
data.	The	module	has	four	outputs	as	busy,	data_rd,	ack_error,	and	eop.	If	the
module	is	transmitting	or	receiving	data,	busy	will	be	at	logic	level	1.	data_rd
indicates	the	read	data	from	the	follower.	ack_error	stands	for	the	active-high
acknowledge	error.	eop	indicates	the	end	of	package.	The	module	also	has	inout
signals	sda	and	scl.	These	are	the	serial	data	and	serial	clock	I2	C	signals,
respectively.

Listing	12.19	Verilog	Description	of	the	I2	C	Leader	Module

We	can	explain	the	working	principles	of	the	I2	C	leader	module	as	a	state
machine.	There	are	nine	states	in	the	machine:	READY,	START,	COMMAND,
SLV_ACK1,	WR,	RD,	SLV_ACK2,	MSTR_ACK,	and	STOP.	The	machine	starts	in	READY
state	and	waits	for	ena	to	go	to	logic	level	1.	When	this	happens,	busy	goes	to
logic	level	1;	the	follower	address	with	the	rw	bit	is	written	to	addr_rw	vector;
data_wr	is	registered	to	the	data_tx	vector;	and	state	changes	to	START.	At	this
state,	the	MSB	of	the	addr_rw	vector	is	loaded	to	sda_int.	This	directly	controls
the	sda	port.	Then,	the	state	changes	to	COMMAND.	In	this	state,	addr_rw	is	loaded

to	sda	line	bit	by	bit.	At	the	end	of	this	operation,	the	leader	module	waits	for	an
acknowledgement	from	the	follower	by	going	to	SLV_ACK1	state.	This	is	when
the	follower	wakes	up	and	says	hello	to	the	leader	by	taking	sda	line	to	logic
level	0.	If	the	follower	does	not	send	an	acknowledgement,	then	ack_error	goes
to	logic	level	1.	The	next	state	is	determined	by	rw	input.	If	rw	is	at	logic	level	1,
the	state	machine	switches	to	RD	state.	Otherwise,	it	switches	to	WR	state.	In	RD
state,	bits	are	received	one	by	one.	They	are	stored	in	the	data_rd	vector.	If	the
bit	counter	equals	to	1,	eop	goes	to	logic	level	1	to	indicate	that	the	package	is
received.	After	all	bits	are	received	(bit	counter	goes	to	zero),	the	state	changes
to	MSTR_ACK	where	the	leader	acknowledges	that	the	package	is	received.
Similarly	in	WR	state,	bits	on	data_tx	vector	are	loaded	to	sda_int	one	by	one.
When	bit	counter	goes	to	1,	eop	goes	to	logic	level	1.	When	all	bits	are
transferred,	the	state	changes	to	SLV_ACK2	where	the	state	machine	waits	for	an
acknowledgement	from	the	follower.	In	both	SLV_ACK2	and	MSTR_ACK	states,	if
ena	is	still	at	logic	level	1,	the	new	follower	address	and	rw	bits	are	written	to
addr_rw	vector.	If	these	are	same	as	in	previous	values,	then	the	state	machine
goes	to	the	state	START	for	a	repeated	start.	Otherwise,	the	state	changes	to	STOP
where	a	stop	signal	is	applied	to	the	I2	C	line.	Then,	the	state	machine	goes	to
READY	state	waiting	for	the	next	transmission	to	start.
Within	the	I2	C	leader	module	in	Listing	12.19,	we	had	to	use	conditional

statements	in	the	dataflow	modeling	as	the	last	two	lines	of	the	description.	The
structure	of	such	a	statement	is	as	assign	variable	=	condition	?	0/1	:
value_to_be_assigned.	This	representation	can	be	used	in	other	Verilog
descriptions	as	well.

12.3.3	I2C	in	VHDL
We	provide	the	VHDL	version	of	the	I2	C	leader	module	in	Listing	12.20.

This	description	is	the	modified	version	of	the	one	available	in	[50].	It	has	been
included	with	their	permission.	This	module	shares	the	same	input,	output,	inout,
and	state	descriptions	as	its	Verilog	version	in	Listing	12.19.	To	avoid	repetition,
we	direct	the	reader	to	the	previous	section	for	the	working	principles	of	the
VHDL	description.

12.3.4	I2C	Application
In	this	application,	we	will	use	the	PMOD	three-axis	digital	compass	module

which	communicates	by	the	I2	C.	The	website	of	the	compass	module	is
provided	in	[51].	The	module	uses	the	Honeywell	HMC5883L	3-axis	digital

compass	which	measures	magnetic	field	and	gives	data	in	three	dimensions	with
16	bits	two’s	complement	form.	The	range	of	data	varies	from	the	hexadecimal
number	F800	to	07FF.	There	are	13	registers	inside	the	chip	each	having	eightbit
data	length.	The	address	of	the	chip	is	the	hexadecimal	number	1E	in	seven	bits.
We	have	to	configure	the	chip	for	continuous	measurement	mode	which	is	not
set	by	default.	This	configuration	register	is	located	at	the	address	02	in
hexadecimal	form.	The	value	for	the	the	continuous	mode	is	00	in	hexadecimal
form.	The	measurements	in	x,	y,	and	z	axes	are	stored	in	the	register	addresses
between	03	and	08	in	the	hexadecimal	form.	Within	the	application,	we	will	read
compass	data	and	send	them	to	PC	terminal	via	the	UART	interface.
To	run	the	compass	module,	we	will	start	the	I2	C	transmission	in	write	mode

and	set	the	chip	to	continuous	mode.	Then,	we	will	continue	with	the	read	mode
to	read	stored	measurements	in	register	addresses.	The	compass	chip	is	designed
with	an	internal	address	counter	which	increments	the	register	address	after
every	operation.	When	the	counter	reaches	the	address	08,	it	turns	back	to	03.
So,	once	we	start	reading	from	03,	we	do	not	have	to	set	the	internal	register
again.	The	chip	needs	some	time	to	make	measurements.	We	can	observe	this
time	by	watching	its	drdy	port	which	goes	to	logic	level	0	when	data	gets	ready
in	registers.	You	can	find	detailed	information	about	the	Honeywell	HMC5883L
3-axis	digital	compass	chip	in	its	data	sheet.

Listing	12.20	VHDL	Description	of	the	I2	C	Leader	Module

The	Verilog	description	of	the	top	module	for	our	application	is	presented	in
Listing	12.21.	This	module	has	three	inputs	as	follows.	clk	is	the	master	clock
on	the	Basys3	board.	btnC	is	the	center	push-button	on	the	Basys3	board	which
is	used	as	reset	button.	drdy	is	the	data-ready	signal	coming	from	the	compass
module.	The	outputs	of	the	module	are	led	corresponding	to	16	LEDS	on	the
Basys3	board	and	RsTx	which	is	the	UART	transmitter	port	of	the	Basys3	board.
Since	we	will	have	the	I2	C	communication,	there	will	be	inout	signals	scl	and
sda.
The	top	module	in	Listing	12.21	can	be	described	as	a	state	machine	which

basically	works	with	eop	signals	introduced	in	Sec.	12.3.2.	If	btnC	is	pressed	on
the	Basys3	board,	reset_n,	package	counter	(pck_cnt)	and	enable	ena	go	to
logic	level	0.	reset_n	is	connected	to	the	reset	input	in	the	I2C_leader	module.
When	pck_cnt	equals	to	zero,	the	state	machine	goes	to	START	state	and	pulls
ena	to	logic	level	1;	writes	the	follower	address	to	addr	vector;	sets	rw	to	write
mode;	and	loads	data	to	be	written	in	data_wr	vector.	In	this	case,	the	first	data
to	be	written	is	the	address	of	the	configuration	register	in	the	compass	chip
which	is	02	in	hexadecimal	form.	Then,	the	state	machine	waits	for	eop	signal
coming	from	the	I2C_leader	module.	A	rising	edge	on	eop	indicates	that
communication	is	established	with	the	follower	and	the	first	eightbit	data	is
almost	sent.	Then,	pck_cnt	is	incremented	by	one	and	state	changes	to	WRITE1.
Here,	data	for	the	configuration	register	is	loaded	to	data_wr	vector.	After	the
second	eop	signal,	we	can	understand	that	the	compass	chip	is	configured.	The
state	goes	to	WAITDATA	where	it	waits	for	drdy	to	go	to	logic	level	1	to	start
reading	data	from	the	compass	registers.	During	this	time,	ena	goes	to	logic	level
0.	Once	we	are	informed	that	data	is	ready	(drdy	is	at	logic	level	0),	ena	goes	to
logic	level	1	again	and	the	state	changes	to	READDATA	by	incrementing	pck_cnt
by	one.	In	this	state,	rw	goes	to	logic	level	1,	which	corresponds	to	the	read
mode.	With	the	next	eop	signal,	the	state	machine	will	be	ready	to	read	data	from
the	data_rd	vector.	Before	the	last	bit	of	the	first	register	is	read,	eop	goes	to
logic	level	1	and	the	state	changes	to	READXH.	When	eop	goes	back	to	logic	level
0,	the	eightbit	data	on	the	data_rd	vector	corresponds	to	the	first	eight	bits	of	the
x-axis	on	the	compass.	Therefore,	we	write	it	to	the	MSB	eight	bit	of	the	x_axis
vector.	Then,	all	data	bits	are	received	similarly.	At	READZL	state,	ena	goes	to
logic	level	0.	The	state	machine	waits	drdy	to	go	to	logic	level	0	to	avoid
repeated	reads.	When	drdy	goes	to	logic	level	0,	pck_cnt	is	reset	to	START	state
and	the	operation	starts	again.
Once	we	have	all	the	data,	the	UART	transmitter	module	is	triggered	with	the

rising	edge	of	drdy	signal.	The	module	responsible	for	this	operation	is

UART_word_tx.	We	provide	the	Verilog	description	of	this	module	in	Listing
12.22.	This	module	sends	data	stored	at	x_axis,	y_axis,	and	z_axis	to	host	PC.
The	reader	can	observe	these	values	through	a	terminal	program	as	explained	in
Sec.	12.1.
We	provide	the	VHDL	description	of	the	top	module	of	our	application	in

Listing	12.23.	This	description	can	be	understood	by	the	corresponding	Verilog
description	since	the	descriptions	share	the	same	naming	conventions	as	in
previous	sections.	We	also	provide	the	VHDL	version	of	the	UART_word_tx
module	in	Listing	12.24.

Listing	12.21	Verilog	Description	of	the	Top	Module	for	the	I2	C	Application

Listing	12.22	Verilog	Description	of	the	UART_word_tx	Module

Listing	12.23	VHDL	Description	of	the	Top	Module	for	the	I2	C	Application

Listing	12.24	VHDL	Description	of	the	UART_word_tx	Module

12.4	Video	Graphics	Array
The	video	graphics	array	(VGA)	is	a	display	standard	used	in	the	CRT	and

LCD	monitors.	The	Basys3	board	has	a	VGA	port	as	mentioned	in	Chap.	3.	We
will	use	it	to	develop	projects	in	Verilog	and	VHDL	in	this	section.	Let’s	start
with	the	working	principles	of	the	VGA.

12.4.1	Working	Principles	of	VGA
In	the	VGA,	the	display	is	formed	of	pixels	(picture	elements).	These	are

grouped	into	horizontal	lines.	Horizontal	lines	placed	on	the	screen	form	a
frame.	Therefore,	a	pixel	location	has	both	horizontal	and	vertical	coordinates.
One	standard	VGA	display	size	is	640	×	480	pixels.	This	should	be	read	as
follows.	The	display	is	formed	of	480	horizontal	lines	each	holding	640	pixels.
The	time	needed	to	display	a	single	pixel	is	determined	by	a	pixel	clock.

Hence,	pixels	in	a	horizontal	line	are	displayed	by	the	successive	clock	signals.
When	end	of	the	line	is	reached,	the	display	should	continue	with	a	new	line.
This	is	set	by	the	horizontal	synchronization	signal.	When	all	lines	in	a	frame	are
displayed,	a	new	frame	should	be	formed.	This	is	set	by	the	vertical
synchronization	signal	which	also	defines	the	refresh	rate	of	display.	The
horizontal	and	vertical	synchronization	signals	depend	on	pixel	clock	by
definition.	Moreover,	the	monitor	needs	some	time	before	applying	horizontal
and	vertical	synchronization	signals.	This	is	called	front	porch.	Similarly,	we
should	wait	for	a	certain	amount	of	time	after	displaying	pixels	in	a	horizontal
line	and	frame.	This	is	called	back	porch.	More	information	on	the	VGA	timing
can	be	found	in	[52].
Every	pixel	has	red,	green,	and	blue	(RGB)	values	in	the	VGA.	As	mentioned

in	Chap.	3,	the	VGA	connector	on	the	Basys3	board	allows	these	RGB	values	to
be	represented	by	at	most	12	bits.	In	this	scenario,	the	RGB	values	get	four	bits
each.	Hence,	a	pixel	can	have	one	of	24	×	24	×	24	=	4096	different	colors.	One
can	also	use	eight	bits	to	represent	the	RGB	values.	Then,	the	RGB	values	get
three,	three,	and	two	bits,	respectively.	Hence,	a	pixel	can	have	one	of	23	×	23	×
22	=	256	different	colors.

12.4.2	VGA	in	Verilog
We	can	display	an	image	using	the	VGA	connection	of	the	Basys3	board.	To

do	so,	we	first	provide	the	Verilog	description	of	the	VGA	module	in	Listing

12.25.	This	module	works	in	connection	with	the	distributed	ROM	and	clock
divider	modules.	We	will	introduce	such	a	complete	application	in	Sec.	12.4.4.
The	inputs	to	the	VGA	module	are	clk25,	pixel_data,	sx,	and	sy.	clk25

represents	the	clock	signal	fed	to	the	VGA	module.	For	our	case,	it	will	be	25
MHz.	pixel_data	represents	the	vector	holding	RGB	pixel	values	to	be
displayed.	The	VGA	module	is	set	to	work	with	eightbit	data.	Hence,	the	RGB
values	get	three,	three,	and	two	bits,	respectively,	as	mentioned	before.	sx	and	sy
represent	the	image	size	to	be	displayed.	Although	the	default	display	size	in
VGA	module	is	640	×	480	pixels,	it	is	not	possible	to	keep	such	an	image	in	the
Artix-7	FPGA	block	or	distributed	ROM.	Therefore,	we	can	set	sx	and	sy	to	80
and	87	pixels	at	most.	The	outputs	of	the	VGA	module	are	red,	green,	blue,
Hsync,	Vsync,	and	pixel_address.	The	outputs	red,	green,	and	blue	represent
the	pixel	color	values	each	being	three,	three,	and	two	bits,	respectively.	Hsync
and	Vsync	represent	horizontal	and	vertical	synchronization	signals.	Finally,
pixel_address	represents	the	address	of	the	pixel	to	be	fed	to	the	accompanying
ROM	module.

Listing	12.25	Verilog	Description	of	the	VGA	Module

The	working	principles	of	the	VGA	module	in	Listing	12.25	are	as	follows.
The	module	is	set	to	work	with	640	×	480	pixels.	These	values	are	represented
as	local	parameters	in	the	module.	Similarly,	front	and	back	porch	values	for
horizontal	and	vertical	synchronization	signals	are	set	as	local	parameters.	Based
on	these	values,	the	maximum	horizontal	and	vertical	display	limits	are	set	as
800	and	525	pixels	as	local	parameters	within	the	module.	We	assume	that	the
input	clock	to	the	module	(clk25)	has	25-MHz	frequency.	Based	on	these
values,	the	refresh	time	of	a	frame	is	800	×	600/25	×	10−6	s.	Hence,	the	refresh
rate	of	the	display	becomes	52	Hz,	which	is	a	suitable	value.	The	VGA	module
calculates	the	pixel	address	to	be	displayed,	whether	to	generate	horizontal	and
vertical	synchronization	signals,	and	RGB	values	to	be	used	in	display.	All	these
operations	depend	on	accurate	and	synchronous	timing	calculations.	Besides,	no
detailed	operation	is	performed.

12.4.3	VGA	in	VHDL
The	VHDL	version	of	the	VGA	module	introduced	in	the	previous	section	is

presented	in	Listing	12.26.	Within	this	module,	we	set	all	input,	output,	and
parameter	names	the	same	as	presented	in	Listing	12.25.	Besides,	the	working
principles	of	both	modules	are	also	the	same.	Hence,	the	reader	can	follow	the
explanation	in	the	previous	section	for	the	VHDL	version	of	the	VGA	module	as
well.

12.4.4	VGA	Application
We	can	use	the	VGA	module	(in	Verilog	or	VHDL)	in	a	simple	application	to

show	its	working	principles.	This	application	displays	an	RGB	image	on	the
display	connected	to	VGA	port	of	the	Basys3	board.	We	first	provide	the
Verilog	version	of	the	top	module	for	the	application	in	Listing	12.27.

Listing	12.26	VHDL	Description	of	the	VGA	Module

The	top	module	in	Listing	12.27	has	input	and	output	values	directly	set	for
the	Basys3	board.	Hence,	XDC	file	namings	are	used	there.	Besides,	the	top
module	has	three	submodules:	clock,	memory,	and	VGA.	The	VGA	submodule	is
the	one	in	Listing	12.25.	The	clock	submodule	is	for	dividing	100-MHz	clock	of
the	Basys3	board	to	25	MHz	to	be	used	in	the	VGA	submodule.	To	do	so,	we	used

“Clocking	Wizard	IP”	which	can	be	found	in	IP	Catalog	→	FPGA	Features	and
Design	→	Clocking.	With	its	simple	interface,	this	IP	block	allows	generating	a
frequency	divider.	The	image	to	be	displayed	is	kept	in	the	distributed	ROM	as
explained	in	Sec.	9.5.	Here,	the	image	is	saved	in	ROM	as	an	initialization	file	in
coe	format.	Here,	we	suggest	a	two-step	operation.	We	provide	the	MATLAB
file	to	generate	a	text	file	from	a	given	TIFF	image	on	this	book’s	companion
website,	www.mhprofessional.com/1259837904.	First,	the	reader	can	convert
the	image	file	to	suitable	text	format	via	this	file.	Second,	this	file	should	be
converted	to	coe	format	as	explained	in	Sec.	9.5.	This	way,	the	image	of	interest
can	be	included	to	the	ROM	module.	As	the	project	is	built	and	the	VGA	port	is
connected	to	the	display,	the	image	should	be	seen	on	it.
We	also	provide	the	VHDL	version	of	the	top	module	for	the	VGA

application	in	Listing	12.28.	This	module	has	the	same	working	principles	as
presented	in	Listing	12.27.	Therefore,	the	explanations	there	directly	apply	to	it
as	well.

Listing	12.27	Top	Module	of	the	VGA	Application	in	Verilog

http://www.mhprofessional.com/1259837904

Listing	12.28	Top	Module	of	the	VGA	Application	in	VHDL

12.5	Universal	Serial	Bus
The	Universal	Serial	Bus	(USB)	is	an	industry	standard	developed	to	unify

connection,	communication,	and	power	supply	between	digital	devices.	It	can	be
used	between	a	PC	and	keyboard,	mouse,	external	hard	drive,	printer,	and	digital
camera.	The	Basys3	and	Arty	boards	have	USB	ports	used	for	powering	and
programming	purposes	as	explained	in	Chap.	3.	The	Basys3	board	also	has	an
extra	USB	port	which	can	be	used	to	connect	peripherals	such	as	keyboard.	In
low	level,	the	USB	operations	are	not	easy	to	manage.	Fortunately,	the	Basys3
board	has	a	PIC24FJ128	chip	which	provides	USB	HID	host	capability	as
mentioned	in	Chap.	3.	We	will	use	this	option	to	develop	the	HDL	projects	here.
Specifically,	we	will	focus	on	interfacing	a	keyboard	to	Basys3	board	since	the
PIC24FJ128	chip	available	on	the	board	converts	the	USB	input	to	standard	PS/2
signals	to	communicate	with	a	mouse	or	keyboard.	Here,	the	Basys3	board	will
be	the	receiver.	The	keyboard	will	be	the	transmitter.	Therefore,	we	will	focus
only	on	the	USB-receiving	module	next.

12.5.1	USB-Receiving	Module	in	Verilog
The	Verilog	description	of	the	USB-receiving	module	is	given	in	Listing

12.29.	The	inputs	of	this	module	are	ps2data	and	ps2clk.	The	outputs	of	the
module	are	data	and	ready.	The	serial	data	on	ps2data	is	received	in	every
falling	edge	of	ps2clk.	Data	is	stored	in	data	output	and	ready	goes	to	logic
level	1	once	all	bits	are	received	and	verified	by	parity	check.
The	USB-receiving	module	(represented	as	a	state	machine)	has	four	states:

RDY,	RECEIVE,	PARITY,	and	STOP.	The	state	machine	starts	at	RDY	state	initially.	In
every	falling	edge	of	ps2clk,	it	checks	whether	ps2data	is	at	logic	level	0,
which	indicates	the	start	of	a	new	transmission.	If	ps2data	is	at	logic	level	0,
ready	goes	to	logic	level	0;	index	is	reset;	and	state	changes	to	RECEIVE.	After
the	start	bit,	in	every	falling	edge	of	ps2clk,	data	at	ps2data	is	received	serially
by	incrementing	index.	Data	is	stored	temporarily	in	vector	received.	When
index	reaches	seven,	the	last	bit	is	received	and	state	changes	to	PARITY	where
the	parity	bit	is	stored	in	prty.	Then,	in	STOP	state	if	the	ps2data	is	at	logic	level
1,	ready	goes	to	logic	level	1.	Here,	parity	check	is	performed,	such	as	if	the
parity	of	received	data	matches	received	parity	bit,	data	is	written	to	the	output
vector.	Otherwise	the	hexadecimal	number	EE	is	written	to	the	output	vector	to
indicate	a	parity	error.

12.5.2	USB-Receiving	Module	in	VHDL
The	VHDL	version	of	the	USB-receiving	module	is	given	in	Listing	12.30.

Here,	the	working	principles	of	both	Verilog	and	VHDL	descriptions	are	the
same.	Therefore,	the	reader	can	check	the	Verilog	description	to	understand	the
VHDL	version.

12.5.3	USB	Keyboard	Application
As	a	USB	application,	we	will	read	numeric	data	(1	to	8)	coming	from	a

keyboard	connected	to	the	USB	port	of	the	Basys3	board.	The	received	data	(as
a	keyscan	code)	will	be	displayed	on	eight	LEDs	(from	15	to	8)	of	the	board.	If
any	number	from	1	to	8	is	pressed	on	the	keyboard,	the	corresponding	LED	(7	to
0)	will	toggle.	Hence,	this	application	aims	to	show	how	a	keyscan	code	can	be
read	from	a	USB	keyboard.
The	keyscan	code	table	of	the	PS/2	keyboard	can	be	found	in	[53].	It	is

straightforward	to	get	data	from	the	keyboard	and	check	if	it	matches	a	number
between	one	to	eight.	However,	reading	a	keyboard	button	data	requires	some
processing.	Therefore,	let’s	first	focus	on	this	operation.	Whenever	a	button	is
pressed	on	the	keyboard,	its	make	code	should	be	sent.	The	make	code	is	the
eightbit	code	you	see	on	the	reference	keyscan	code	table.	Once	the	button	is
released,	a	break	code	is	transmitted.	The	break	code	has	a	specific	eightbit	code
(the	hexadecimal	number	F0	for	characters	and	numbers)	followed	by	the	same
make	code	of	the	button.	Let’s	explain	how	this	is	done	by	an	example.	The
hexadecimal	keyscan	code	of	the	button	for	number	one	is	16.	When	the	button
is	pressed,	the	make	code	of	the	button	is	sent	immediately.	Once	the	button	is
released,	the	keyboard	sends	the	break	code	as	hexadecimal	number	F0	and	16
again.	Therefore,	for	the	normal	button	press	and	release,	we	should	get	the
corresponding	hexadecimal	make	code,	number	F0,	and	make	code	again.	If	the
button	is	pressed	and	held	down,	this	key	is	called	typematic.	If	the	button	press
exceeds	the	typematic	delay	time	of	the	keyboard,	it	continues	sending	the	make
code	repeatedly	until	the	button	is	released.	Once	the	button	is	released,	the
transmission	concludes	with	the	break	code.	This	should	be	taken	into	account	in
reading	a	button	press	from	the	keyboard.

Listing	12.29	Verilog	Description	of	the	USB	Receiver	Module

Listing	12.30	VHDL	Description	of	the	USB	Receiver	Module

We	provide	the	Verilog	description	of	the	top	module	of	the	application	in
Listing	12.31.	The	inputs	of	the	top	module	are	clk,	PS2Clk,	and	PS2Data.
PS2Clk	and	PS2Data	are	directly	connected	to	the	USB	port	of	the	Basys3	board
via	its	XDC	file.	clk	is	the	master	clock	of	the	board.	The	output	of	the	module
is	16-element	led	vector.	Again,	this	output	is	connected	to	LEDs	on	the	Basys3
board	via	its	XDC	file.

Listing	12.31	Verilog	Description	of	the	USB	Keyboard	Application

Top	module	for	the	USB	application	can	be	taken	as	a	state	machine	with	four
states:	PRESS,	EXTEND,	RLS,	and	CHECK.	Based	on	these,	we	can	explain	the
working	principles	of	the	top	module	as	follows.	In	every	rising	edge	of	clk,
ready	signal	from	the	USB_keyboard	module	is	checked	to	detect	its	rising	edge.
In	PRESS	state,	if	ready	goes	to	logic	level	1	(when	a	button	is	pressed)	the
eightbit	receiving	data	(make	code)	is	stored	in	the	most	significant	eight	bits	of
24-bit	received	vector	and	the	state	changes	to	EXTEND.	The	top	module	waits
for	another	rising	edge	of	ready	which	can	be	a	repeated	make	code	(when	the
button	is	still	pressed)	or	the	first	byte	of	the	break	code	which	is	the
hexadecimal	number	F0	if	the	button	is	released.	Here,	the	received	data	is
written	to	the	middle	eight	bits	of	received	vector	and	the	state	is	changed	to
RLS.	In	this	state,	the	previously	received	data	is	checked	for	whether	the	button
is	released	or	not	before	waiting	for	the	next	ready	signal.	If	the	last	received
data	is	the	hexadecimal	number	F0,	this	means	that	the	button	is	released	and	we
are	ready	to	check	if	the	pressed	button	was	one	of	the	numbers	from	one	to

eight.	Otherwise,	we	should	understand	that	the	button	is	still	pressed	and	we
should	go	back	to	EXTEND	state	to	wait	for	the	button	release.	This	depends	on
the	designer.	For	a	continuous	press,	you	can	send	multiple	characters	or	wait	for
the	button	release	and	send	the	character	only	once.	We	selected	the	latter	option
in	our	module.	Hence,	if	the	button	is	released,	the	last	eightbit	data	will	be
received	and	written	to	the	least	significant	eight	bits	of	the	received	vector.	In
CHECK	state,	the	corresponding	LED	on	the	Basys3	board	is	toggled	if	the	pressed
button	was	one	of	the	numbers	in	the	keyboard	from	1	to	8.	The	received	data	is
also	displayed	on	LEDs	15	to	8.	The	state	of	the	machine	turns	back	to	PRESS
unconditionally	and	waits	for	another	ready	signal.
The	VHDL	description	of	the	USB	keyboard	application	is	given	in	Listing

12.32.	This	description	is	in	line	with	its	Verilog	counterpart.	Therefore,	the
explanation	there	applies	to	this	description	as	well.

Listing	12.32	VHDL	Description	of	the	USB	Keyboard	Application

12.6	Ethernet
Ethernet	is	an	industry	standard	for	local	area	network	(LAN).	Each	device	in

the	network	has	a	unique	address	called	internet	protocol	(IP)	address.	IP	is	the
the	main	communication	protocol	in	networking	and	it	essentially	forms	the
Internet.	The	data	communication	is	established	on	IP	address	headers	followed
by	data	signals.	Unfortunately,	IP	has	a	complicated	structure	which	makes	it
hard	to	implement	it	at	the	lowest	level.
To	explain	the	working	principles	of	ethernet	and	how	it	can	be	implemented

on	an	FPGA,	we	benefit	from	the	application	in	[54].	Here,	an	echo	server	is
developed	on	the	Arty	board	since	it	has	an	integrated	ethernet	connector	as
explained	in	Chap.	3.	As	all	the	steps	explained	in	the	mentioned	website	are
followed,	and	the	project	is	implemented	on	the	board,	every	character	you	write
to	the	terminal	echoes	back	to	your	IP	terminal.	This	application	can	be
expanded	further	for	more	advanced	applications.

12.7	FPGA	Building	Blocks	Used	in	Digital

Interfacing
The	digital	interfacing	concepts	introduced	in	this	section	are	both	complex

and	diverse.	Therefore,	we	can	assume	that	almost	all	the	FPGA	blocks
introduced	in	previous	chapters	are	used	in	either	one	or	two	applications.	Note
that	the	digital	interfacing	applications	introduced	in	this	chapter	are	not	unique.
In	other	words,	HDL	modules	given	in	this	chapter	are	not	unique	for	a	given
interfacing	option.	Hence,	comparing	different	digital	interfacing	options	based
on	their	FPGA	resource	usage	will	not	be	fair.	As	a	result,	we	ask	the	reader	to
check	his	or	her	digital	interfacing	application’s	FPGA	usage.

12.8	Summary
The	digital	interfacing	is	becoming	more	and	more	important	with	the

introduction	of	the	Internet	of	things	in	which	communication	of	two	or	more
embedded	devices	is	a	fundamental	necessity.	Therefore,	we	started	with	serial
communication	methods	as	UART,	SPI,	and	I2	C	as	well	as	advanced	ethernet
protocol	in	this	chapter.	These	communication	methods	can	also	be	used	in
interfacing	the	FPGA	with	sensor	chips	using	them.	Then,	we	introduced	other
important	interfacing	methods,	the	VGA	and	USB.	The	VGA	allows	the	user	to
display	images	on	a	monitor.	Hence,	it	opens	up	a	way	for	more	advanced
applications.	In	the	same	way,	using	a	USB	connection	allows	the	reader	to
benefit	from	more	advanced	peripheral	devices	such	as	a	keyboard	or	mouse.	As
a	result,	methods	introduced	in	this	chapter	can	improve	the	quality	of	the
application	to	be	developed	on	the	FPGA.	We	will	provide	such	examples	in	the
following	chapters.

12.9	Exercises
12.1			Implement	the	provided	UART	applications	on	the	Basys3	board	in
Sec.	12.1	to	check	how	they	work.
12.2			Repeat	Exercise	12.1	using	the	Arty	board.
12.3			One	method	of	testing	the	UART	transmitter	and	receiver	modules	is
implementing	both	on	the	same	FPGA.	If	these	modules	are	also
appropriately	connected	via	their	TX	and	RX	pins	in	a	top	module,	then	the
UART	communication	can	be	simulated	on	one	FPGA	chip.	Implement
such	an	application	on	the	Basys3	board	such	that	when	btnC	is	pressed,	the
transmitter	module	sends	a	character	to	the	receiver	module.	As	this
character	is	received,	led[0]	on	the	Basys3	board	toggles.

12.4			Modify	the	application	in	Exercise	12.3	to	work	on	the	Arty	board.
12.5			Implement	the	provided	SPI	application	on	the	Basys3	board	in	Sec.
12.2	to	check	how	it	works.
12.6			Repeat	Exercise	12.5	using	the	Arty	board.
12.7			Repeat	Exercise	12.3	using	the	SPI	communication	on	the	Basys3	or
Arty	board.
12.8			Repeat	Exercise	12.3	using	the	I2	C	communication	on	the	Basys3	or
Arty	board.
12.9			Implement	the	provided	VGA	application	on	the	Basys3	board	in
Sec.	12.4	to	check	how	it	works.

12.10			Modify	the	VGA	application	in	Sec.	12.4	such	that	when	a	color	image	is
given,	its

a.	red	band	is	displayed	only.
b.	green	band	is	displayed	only.
c.	blue	band	is	displayed	only.

12.11			Implement	the	provided	USB	application	on	the	Basys3	board	in	Sec.
12.5	to	check	how	it	works.

12.12			Modify	the	application	in	Exercise	12.11	such	that	when	a	button	is
pressed	on	the	keyboard,	it	is	displayed	on	the	rightmost	sevensegment
display	of	the	Basys3	board.	Note	that	numbers	can	be	displayed	easily
on	the	sevensegment	display.	However,	characters	on	the	keyboard
should	be	limited	such	that	only	a	subset	of	them	can	be	displayed	such	as
“E”,	“R”,	“U”,	and	so	on.

12.13			Modify	the	application	in	Exercise	12.11	such	that	when	a	button	is
pressed	on	the	keyboard,	the	corresponding	character	is	displayed	on	the
terminal	window	of	the	host	PC	via	the	UART	communication.

12.14			Implement	the	provided	ethernet	application	on	the	Arty	board	in	Sec.
12.6	to	check	how	it	works.

CHAPTER	13

Advanced	Applications

We	have	used	the	field-programmable	gate	array	(FPGA)	to	implement	both
basic	digital	systems	and	sample	applications	up	to	this	chapter.	The	FPGA	can
also	be	used	to	develop	more	functional	and	advanced	digital	systems	using	tools
introduced	in	previous	chapters.	This	chapter	will	be	on	such	advanced
applications.	Therefore,	we	will	start	with	integrated	logic	analyzer	IP	core
analyzer	first.	This	IP	core	will	allow	us	to	analyze	a	working	digital	system	on
the	FPGA	chip.	Afterward,	we	will	focus	on	the	XADC	block	usage	to	process
analog	signals	on	the	FPGA.	Then,	we	will	provide	22	applications	of	which
nine	have	implementation	details	here.	Remaining	applications	will	only	have
their	description	such	that	they	can	be	implemented	on	the	FPGA.

13.1	Integrated	Logic	Analyzer	IP	Core	Usage
When	designing	a	digital	system	on	an	FPGA,	we	may	need	to	observe

internal	signals	of	the	design.	Vivado	offers	a	way	to	achieve	this	by	integrated
logic	analyzer	(ILA)	IP	core	usage.	This	core	acts	as	an	actual	logic	analyzer	for
monitoring	signals	in	the	FPGA.	Since	this	is	a	very	important	topic	for	actual
digital	system	realization,	we	focus	on	it	in	this	section.	We	pick	a	simple
Verilog	project	on	the	Basys3	board	to	show	how	ILA	can	be	used.	For	more
information	on	this	issue,	please	see	[55,	56].
Let’s	take	an	example	project	to	blink	the	rightmost	LED	on	the	Basys3	board

every	second.	We	provide	the	Verilog	description	for	this	project	in	Listing	13.1.
In	this	module,	there	is	a	clock	divider	producing	output	clk1	from	the	main
clock	of	the	Basys3	board.	Assume	that	we	would	like	to	observe	this	signal
using	ILA.
We	can	observe	the	signal	clk1	using	ILA	applying	the	following	steps	before

synthesizing	the	project.	In	Flow	Navigator,	select	Synthesis	→	Set	up	Debug.
In	the	opening	Set	Up	Debug	window,	add	the	signal	clk1	to	the	list.	This	can	be
done	in	several	ways.	The	easiest	way	is	dragging	and	dropping	it	from	the

Netlist	window	in	Project	Explorer.	Make	sure	that	the	probe	type	is	selected	as
“Data	and	Trigger”.	As	we	press	next,	a	new	window	titled	ILA	Core	Options
appears	asking	for	the	ILA	features.	The	user	can	select	the	sample	data	size	in
this	tab.	We	should	also	tick	Capture	control	box	in	this	tab.	As	we	press	Next,
the	final	window	appears	titled	as	Set	up	Debug	Summary.	Pressing	Finish
button	at	this	window	finalizes	the	debug	setup.	Afterward,	we	should	generate
bitstream	and	embed	it	on	the	FPGA	of	the	Basys3	board.	Different	from	steps
explained	in	Sec.	4.6.2,	there	will	be	two	files	to	be	embedded	now,	one	for	the
actual	implementation	(Bitstream	file),	the	other	for	debugging	(Debug	probes
file).	Afterward,	the	ILA	window	appears	in	the	project	explorer	window.	As	we
press	“Run	trigger	for	this	ILA	core”	button,	ILA	starts	working	and	the	result	is
displayed	on	the	screen.	The	user	can	also	export	this	result	by	right	clicking
(and	selecting	Export	ILA	data)	on	the	signal	of	interest	in	the	ILA	window.	In
the	opening	window,	the	user	should	enter	the	target	location	and	file	format
type	for	the	export	operation.	We	suggest	using	VCD	format	for	exporting	data.
Hence,	it	can	be	opened	as	a	text	file.

Listing	13.1	Verilog	Description	of	the	Example	Project	for	ILA	Usage

13.2	The	XADC	Block	Usage
Processing	an	analog	signal	in	digital	system	requires	analog-to-digital

conversion	as	the	first	step.	The	Artix-7	FPGA	has	a	specific	XADC	block	for
this	purpose	as	mentioned	in	Sec.	2.2.8.	This	block	is	connected	to	the	JXADC
Pmod	port	of	the	Basys3	board.	It	is	capable	of	converting	four	external
differential	signals	to	digital	form	since	the	port	has	four	differential	pins.	Also,

differential	signals	to	digital	form	since	the	port	has	four	differential	pins.	Also,
the	XADC	block	has	an	internal	temperature	sensor	which	can	be	selected	to
read	its	output.	In	this	section,	we	will	focus	on	the	usage	of	the	XADC	block
with	two	applications.	The	first	application	will	be	on	reading	temperature	value
from	the	internal	sensor	of	the	FPGA	chip.	The	second	application	will	be	on
measuring	voltage	level	of	a	battery	connected	to	ports	of	the	Basys3	board.
We	will	benefit	from	an	IP	block	(XADC	Wizard)	available	in	Vivado	to	use

the	XADC	block.	Therefore,	we	should	first	create	a	project	and	add	XADC
Wizard	to	it.	To	do	so,	we	should	select	XADC	Wizard	from	the	IP	Catalog	→
FPGA	Features	and	Design	→	XADC.	By	double-clicking	on	the	IP	block,	we
can	open	its	configuration	window.	For	our	two	applications,	we	will	remove
reset_in	and	change	Startup	Channel	Selection	mode	to	Channel	Sequencer	in
the	Basic	tab.	We	can	select	which	channels	to	add	to	the	XADC	block	from	the
Channel	Sequencer	tab.	For	our	first	application	(temperature	sensing),	we
should	tick	the	TEMPERATURE	box.	For	our	second	application	(measuring
voltage),	we	should	tick	the	vauxp6/vauxn6	box.	Now,	we	are	ready	to	integrate
the	IP	block	to	our	project.
After	integrating	the	IP	block	to	the	project,	you	can	go	ahead	and	check	its

instantiation	file.	Although	there	are	many	inputs	and	outputs,	we	do	not	have	to
use	all	of	them	for	a	basic	ADC	operation.	To	be	more	specific,	we	will	only
need	the	address	register	(daddr_in),	clock	in	(dclk_in),	enable	(den_in),	data
out	(do_out),	end	of	conversation	signal	(eoc_out),	and	data	ready	signal
(drdy_out)	for	our	two	applications.	The	address	register	will	have	value	00	and
16	in	hexadecimal	form	for	TEMPERATURE	and	vauxp6/vauxn6	inputs,
respectively.	For	more	information	on	the	usage	of	the	XADC	Wizard,	please
see	[5,	57].
As	the	first	application,	we	will	read	analog	values	from	the	internal

temperature	sensor	of	the	FPGA.	We	will	show	the	result	on	sevensegment
display	and	LEDs	of	the	Basys3	board.	Top	module	for	the	first	application	is
given	in	Listing	13.2.	This	module	has	one	input	as	clk	(the	main	clock	signal
on	the	Basys3	board).	The	outputs	of	the	module	are	16-bit	led,	sevensegment
display	outputs	seg	and	an	associated	with	XDC	file	of	the	Basys3	board.

Listing	13.2	Verilog	Description	of	the	Top	Module	to	Convert	Analog
Temperature	Value	to	Digital	Form

In	Listing	13.2,	we	integrate	the	xadc_wiz_0	module	with	den_in	connected
to	eoc_out	which	ensures	that	the	device	operates	in	continuous	mode.	We
provide	the	temperature	value	in	raw	digital	form	on	16	LEDs	of	the	Basys3
board.	We	also	show	the	temperature	value	in	Celsius	on	sevensegment	display.
Raw	digital	data	can	be	converted	into	Celsius	form	with	the	help	of	the
conversion	formula	in	[5].	Note	that	although	the	output	of	the	XADC	module	is
16	bits,	only	most	significant	12	bits	are	valid	since	the	XADC	block	has	the	12-
bit	resolution.
As	the	second	application,	we	will	read	voltage	level	on	an	alkaline	battery

connected	to	the	Basys3	board.	Alkaline	batteries	have	1.5	V	when	they	are	fully
charged.	This	value	goes	down	to	1	V	when	the	battery	is	dead.	To	measure
voltage	level	on	the	battery,	we	should	have	a	voltage	divider	circuit	since

analog	input	of	the	XADC	block	accepts	at	most	1	V.	To	do	so,	connect	two
high-valued	resistors	in	series	with	one	end	at	the	positive	terminal	of	the	battery
and	the	other	end	at	the	negative	terminal.	Then,	connect	the	common	node	of
resistors	to	XA1_P	port	while	connecting	negative	terminal	of	the	battery	to	XA1_A
of	the	Basys3	board.
We	will	show	the	result	on	the	sevensegment	display	and	LEDs	of	the	Basys3

board.	Top	module	for	the	second	application	is	given	in	Listing	13.3.	This
module	has	three	inputs:	clk	(the	main	clock	signal	on	the	Basys3	board)	and
auxiliary	inputs	vauxp6,	vauxn6	which	are	connected	to	XA1_P	and	XA1_A	via
the	XDC	file	of	the	Basys3	board.	The	outputs	of	the	module	are	16-bit	led,
sevensegment	display	values	seg	and	an	associated	with	the	XDC	file	of	the
Basys3	board.
In	Listing	13.3,	we	integrate	the	xadc_wiz_0	module	with	den_in	connected

to	eoc_out,	which	ensures	that	the	device	operates	in	continuous	mode.	We
provide	the	voltage	value	in	raw	digital	form	on	16	LEDs	of	the	Basys3	board.
We	also	show	the	voltage	value	(in	millivolts)	on	the	sevensegment	display.
Note	that	since	we	applied	voltage	division,	we	should	have	seen	only	half	of	the
voltage	value.	However,	since	we	modified	the	read	value	in	the	description,	we
will	see	actual	voltage	levels.	Therefore,	if	the	voltage	value	is	around	1500
(mV),	this	means	the	battery	is	full.	If	the	reading	is	around	1000	(mV),	this
means	the	battery	is	about	to	die.

13.3	Adding	Two	Floating-Point	Numbers
We	have	introduced	arithmetic	operations	on	floating-point	numbers	in	Chap.

6.	We	have	mentioned	there	that	operations	on	the	floating-point	numbers	are
complex.	In	this	section,	we	will	handle	addition	operation	on	two	floating-point
numbers	in	half	form.	We	provide	the	Verilog	description	of	the	corresponding
module	in	Listing	13.4.	This	module	has	four	inputs	as	follows.	clk	represents
the	main	clock	to	be	fed	to	the	module.	add	is	for	starting	the	addition	operation.
number1	and	number2	stand	for	floating-point	numbers	to	be	added.	The	module
has	two	outputs	as	result	and	ready.	The	first	one	holds	the	result	of	the
operation.	The	second	one	indicates	that	the	operation	has	ended.
The	floating	point	adder	module	in	Listing	13.4	uses	two	42-bit	vectors	to

perform	shifting	operations	on	number1	and	number2.	The	adder	module	is	a
state	machine.	When	add	is	at	logic	level	1,	the	state	machine	starts	working.
Hence,	ready	is	set	to	logic	level	0,	and	state	goes	to	START.	Here,	first	sign	bit
of	numbers	are	compared.	If	these	are	different,	the	one	with	the	bigger	absolute
value	is	determined.	Therefore,	exponential	and	fractional	parts	of	numbers	are

compared	successively.	The	aim	here	is	subtracting	the	smaller	number	from	the
bigger	one	and	keeping	sign	of	the	bigger	number.	Afterward,	the	state	machine
goes	to	NEGPOS	state.	Here,	shifting	operations	are	done	and	state	of	the	machine
goes	to	OP.	Here,	sign	bits	are	considered	again	to	decide	whether	to	perform
addition	or	subtraction	operation.	If	sign	of	both	numbers	are	the	same,	we	add
them	and	go	to	the	SHIFT	state	to	perform	another	shifting	operation.	Then,	the
state	goes	to	WRITE	in	which	the	machine	forms	result	arrays.	The	final	state	is
RST,	in	which	the	final	result	is	prepared	and	ready	is	set	to	logic	level	1.	Hence,
the	state	machine	goes	to	RDY	state	for	a	new	addition	operation.

Listing	13.3	Verilog	Description	of	the	Top	Module	to	Convert	External
Voltage	Value	to	Digital	Form

Listing	13.4	Adding	Two	Floating-Point	Numbers	in	Verilog

The	user	can	check	how	the	floating-point	adder	module	works	by	using	its
testbench	file	given	at	this	book’s	companion	website,
www.mhprofessional.com/1259837904.	We	strongly	suggest	that	the	reader
check	floating-point	addition	operations	considered	in	Chap.	6	to	cross-check	the
results	there.	Moreover,	the	module	introduced	in	this	section	can	be	expanded
further	to	handle	subtraction,	division,	and	multiplication	operations	on	floating-
point	numbers	as	well.	Xilinx	also	offers	an	IP	block	for	floating-point
operations	under	IP	catalog	→	Math	Functions	→	Floating	Point.	The	reader	can
check	it	for	efficient	floating-point	calculations.

13.4	Calculator
The	calculator	application	has	been	improved	up	to	this	chapter.	Now,	it	is

time	to	finalize	it.	Therefore,	we	modify	it	such	that	two-digit	decimal	numbers
can	be	taken	as	input.	A	USB	keyboard	can	be	used	for	this	purpose.	The	result
(which	can	go	up	to	4096)	will	be	seen	on	sevensegment	display	of	the	Basys3
board.	We	provide	the	top	module	for	the	calculator	application	in	Listing	13.5.
As	can	be	seen	here,	the	top	module	uses	several	IP	modules	developed	in
previous	chapters.	These	are	the	sevensegment	display	driver,	calculator,
debounce,	and	binary	to	BCD	modules.	When	the	calculator	IP	module	is	used,
the	number	length	is	set	as	seven.

Listing	13.5	Calculator	in	Final	Form	Implemented	on	the	Basys3	Board	in
Verilog

http://www.mhprofessional.com/1259837904

The	top	module	also	uses	the	keyboard	keypad	controller	module.	Before
explaining	the	top	module,	let’s	focus	on	this	module	first.	We	provide	the
Verilog	description	of	the	keyboard	controller	module	in	Listing	13.6.	The
working	principles	of	this	module	are	very	similar	to	the	USB	keyboard
application	in	Chap.	12.	There,	we	processed	the	scancode	to	toggle	LEDs	on	the
Basys3	board.	Here,	we	convert	the	scancode	of	numbers	0	to	9	to	the
corresponding	binary	code.	Hence,	we	can	easily	use	a	USB	keyboard	as
keypad.
In	Listing	13.5,	the	direction	buttons	on	the	Basys3	board	are	used	as

operation	entries.	Hence,	btnU	is	used	for	addition;	btnD	is	used	for	subtraction;
btnR	is	used	for	multiplication;	btnL	is	used	for	division;	and	btnC	is	used	as	the
equal	sign.	The	top	module	uses	the	main	clock	of	Basys3	(clk)	and
communicates	with	the	USB	keyboard	by	PS2Clk	and	PS2Data	ports.	The	first
switch	of	the	Basys3	board	(sw[0])	acts	as	reset	input	(which	will	be	used	after
an	operation).	The	sevensegment	display	ports,	seg	and	an,	are	also	integrated	in
the	top	module.
The	working	principles	of	the	calculator	top	module	(as	a	state	machine)	are

as	follows.	The	reset	input	sw[0]	is	checked	at	every	positive	edge	of	the	main
clock.	If	it	is	at	logic	level	1,	then	all	numbers,	sevensegment	display	digits,	and
state	of	the	machine	go	to	zero.	When	sw[0]	is	at	logic	level	0,	the	state	machine
checks	for	a	ready	signal	from	the	USB	keyboard.	When	the	first	number	is
entered	via	keyboard,	it	is	written	to	the	rightmost	digit	on	the	sevensegment
display.	The	user	should	enter	the	number	as	he	or	she	is	using	an	actual
calculator.	Hence,	the	first	entry	will	be	the	tens	digit	of	the	first	number.	Then,
ones	digit	of	the	first	number	should	be	entered	by	keyboard.	After	the	first
number	is	entered,	the	state	machine	waits	for	operator	selection.	This	can	be
done	by	pressing	one	of	the	direction	buttons	as	mentioned	before.	Afterward,
the	second	number	should	be	entered	similar	to	the	first	one.	Pressing	the	center
button	(designated	as	the	equal	sign)	will	generate	the	result	of	the	operation	and
show	it	on	the	sevensegment	display.	The	user	should	reset	the	calculator	(by
using	sw[0])	for	a	new	operation.	Note	that	reset	can	be	applied	in	any	phase	of
the	calculation.

13.5	Home	Alarm	System
We	can	use	sensors	instead	of	switches	to	realize	an	actual	home	alarm

system.	Therefore,	we	replace	switches	representing	windows	and	door	by
proximity	sensors.	The	proximity	sensor	we	picked	works	as	follows.	If
someone	goes	in	front	of	the	sensor,	it	provides	the	output	of	logic	level	0.
Otherwise,	the	output	of	the	sensor	is	at	logic	level	1.

Otherwise,	the	output	of	the	sensor	is	at	logic	level	1.

Listing	13.6	Verilog	Description	of	the	Keyboard	Keypad	Controller	Module

Listing	13.7	Home	Alarm	System	in	Final	Form	Implemented	on	the	Basys3
Board	in	Verilog

Besides	these	sensors,	we	also	added	a	movement	(PIR)	sensor	and	sound
detector	to	the	home	alarm	system.	The	output	of	the	movement	sensor	is	at
logic	level	0.	If	it	senses	a	movement,	this	output	goes	to	logic	level	1.	If	the
sound	detector	detects	a	sound	higher	than	its	sensitivity	value	(threshold),	then

its	output	goes	to	logic	level	0.	Otherwise,	its	output	stays	at	logic	level	1.	Based
on	these	improvements,	we	provide	the	final	form	of	the	home	alarm	system	in
Listing	13.7.
Movement,	proximity,	and	sound	sensors	all	have	three	pins:	VCC,	GND,	and

OUT.	They	are	all	supplied	by	3.3	V	from	the	Basys3	board.	The	output	of	the
movement	sensor	is	connected	to	JB[3].	The	proximity	sensor	output	is
connected	to	JB[7].	The	sound	sensor	output	is	connected	to	JA[3].

13.6	Digital	Safe	System
We	can	finalize	the	digital	safe	system	by	adding	a	USB	keyboard	to	it.

Besides,	the	digital	safe	will	work	as	explained	in	Chap.	10.	We	provide	the
modified	and	final	form	of	the	digital	safe	in	Listing	13.8.

Listing	13.8	Digital	Safe	System	in	Final	Form	Implemented	on	the	Basys3
Board	in	Verilog

Let’s	explain	the	working	principles	of	the	digital	safe	system	(as	a	state
machine)	step	by	step.	The	system	starts	with	a	default	password	1234.	When
the	user	enters	it,	the	safe	opens.	Here,	user	has	two	options.	The	first	one	is
changing	the	password.	The	second	one	is	locking	the	safe	again.	When	btnC	on
the	Basys3	board	is	pressed,	the	safe	locks	again.	If	the	user	presses	btnU,	digital
safe	goes	to	the	password	changing	state.	Here,	it	expects	the	user	to	enter	a	new
password.	This	can	be	done	by	using	numbers	on	the	keyboard.	Since	this	is	a
prototype	system,	the	entered	password	is	also	shown	on	the	sevensegment
display	(and	LEDs)	of	Basys3.	When	a	new	password	is	entered,	the	user	should
press	btnD	to	save	it.	Afterward,	btnC	should	be	pressed	to	lock	the	safe	again.
While	entering	the	password	digits,	the	user	may	press	btnR	anytime	to	restart
again.

13.7	Car	Park	Occupied	Slot	Counting	System
We	can	finalize	the	car	park	occupied	slot	counting	system	in	several	ways.

First,	we	can	add	a	bluetooth	module	such	that	the	user	can	open	garage	gate	by
using	his	or	her	cell	phone.	Here,	a	simple	Android	application	developed	under
MIT	App	Inventor	may	be	sufficient	[58].	Also,	we	can	add	a	proximity	sensor
to	the	garage	gate.	Hence,	we	can	detect	whether	the	car	is	passing	through	the
gate.	We	can	also	add	a	stepper	motor	to	open	and	close	the	garage	gate.
Let’s	start	with	the	stepper	motor.	The	stepper	motor	used	in	this	application

is	24BYJ48.	This	stepper	motor	has	five	terminals.	The	four	of	them	drive	coils
and	the	last	one	is	ground	as	can	be	seen	in	Fig.	13.1.	To	run	this	motor,	we	will
use	the	Digilent	Pmod	STEP:	stepper	motor	driver	[59].	We	will	connect
terminals	of	the	stepper	motor	from	left	to	right	like	pink,	yellow,	orange,	and
blue	to	the	driver.	The	red	wire	is	the	ground.	For	connection	properties,	please
see	the	website	appearing	in	[59].

FIGURE	13.1	Stepper	motor	terminals.

We	provide	the	Verilog	description	of	the	stepper	motor	driver	in	Listing	13.9.
There	are	five	inputs	in	the	module.	These	are	clk	(clock	signal),	rst	(active-
high	reset),	en	(active-high	enable),	trig	(active-high	trigger),	and	dir
(direction;	logic	level	1:	clockwise,	logic	level	0:	counter	clockwise).	The	output
of	the	module	is	a	four-bit	vector	driver.
We	can	explain	the	working	principles	of	the	stepper	motor	driver	(as	a	state

machine)	presented	in	Listing	13.9	as	follows.	The	module	has	two	parameters.
motorfreq	determines	the	frequency	in	which	the	motor	will	be	driven.	degree
is	used	to	tell	the	module	how	much	it	will	turn	in	degrees	(360	for	a	full	spin).
The	state	machine	has	three	states	as	follows.	In	RDY	state,	the	driver	waits	for	a
trigger.	In	TURN	state,	the	motor	turns	depending	on	the	degree	parameter.	The
last	state,	MOTORSTATE	is	used	to	drive	the	motor.	Within	the	stepper	motor	driver
module,	the	input	clock	signal,	clk,	is	divided	to	generate	motorclk	in	frequency
set	by	the	parameter	motorfreq.	This	frequency	will	be	used	to	run	the	motor.
Since	motorfreq	is	around	100	Hz	at	most,	it	is	hard	to	catch	the	trigger	signal.

To	avoid	this	issue,	trig	signal	is	sampled	in	every	clk	signal.	If	its	rising	edge
is	catched,	trig_int	goes	to	logic	level	1,	and	the	state	machine	waits	until	the
state	changes	to	TURN.	Hence,	we	make	sure	that	turning	of	the	motor	has	begun.
In	every	rising	edge	of	motorclk,	if	the	machine	is	in	RDY	state,	the	module
checks	if	en	and	trig_int	are	both	at	logic	level	1.	If	this	is	the	case,	the	state
changes	to	TURN	and	the	motor	is	driven	by	four-bit	outputs	depending	on	the
dir	bit	until	the	predetermined	degree	is	satisfied.
We	provide	the	top	module	for	the	final	car	park	occupied	slot	counting

system	in	Listing	13.10.	Different	from	previous	versions	of	the	application,	the
proximity	sensor	is	located	in	the	garage	gate	which	controls	if	the	car	is	still
passing	through.	Switches	on	the	Basys3	board	imitate	the	output	of	the
proximity	sensors	located	in	each	parking	slot.	Once	the	user	approaches	the
gate,	he	or	she	sends	the	character	O	via	cell	phone	to	the	bluetooth	adapter
connected	to	the	Basys3	board	via	UART	communication.	Then,	the	gate	opens
and	waits	for	12	seconds	to	close	unless	the	car	is	still	passing	through.	Since	the
steppermotor	module	is	integrated	as	an	IP	block	to	the	project,	it	asks	for	the
rotation	degree	in	initialization	window.	If	you	do	not	integrate	your	module	in
your	IP	library,	then	you	have	to	add	90	degree	as	a	parameter	to	module
initialization.
Let’s	briefly	explain	the	hardware	used	in	this	application.	The	output	of	the

proximity	sensor	is	connected	to	JC[3]	port	of	the	Basys3	board,	the	one	we
have	used	before.	The	bluetooth	adapter	HC-06	is	connected	to	JB	port,	such	that
the	receiving	port	of	the	module	is	connected	to	JB[3].	The	clock	used	by	the
module	is	the	master	clock	on	the	Basys3	board.	The	stepper	motor	introduced	in
this	section	is	used	at	the	garage	gate.

Listing	13.9	Verilog	Description	of	the	Stepper	Motor	Driver	Module

Listing	13.10	Car	Park	Occupied	Slot	Counting	System	in	Final	Form
Implemented	on	the	Basys3

13.8	Vending	Machine
We	can	finalize	the	vending	machine	by	adding	a	bluetooth	module	to	send	a

signal	if	one	of	the	products	runs	out	of	stock.	We	provide	the	final	form	of	the
vending	machine	on	the	Basys3	board	in	Listing	13.11.
In	Listing	13.11,	we	use	the	bluetooth	module	via	the	UART	communication.

The	bluetooth	adapter	HC-06	is	connected	to	JC	port.	Hence,	the	transmitter	port
of	the	module	is	connected	to	JC[2]	port	of	the	Basys3	board.	As	a	reminder,
outofstock	vector	indicates	if	one	of	the	products	has	gone	out	of	stock	in	the
vending	machine.	Therefore,	we	check	a	rising	edge	in	this	vector.	Assume	that
the	second	item	went	out	of	stock.	Then,	the	phrase	“2	OUT	OF	STOCK”	is
loaded	to	the	word	vector	of	vending_machine	and	wordsend	is	set	to	logic	level
1	for	the	UART	transmission	(to	the	bluetooth	module)	to	start.	Within	the	top
module,	the	money	entrance	is	imitated	by	btnR	for	25	cents	and	btnL	for	1
dollar	again.	First	four	switches	on	the	Bassy3	board	are	used	to	select	the
product	and	btnC	stands	for	the	final	buy	command.	A	stepper	motor	(connected
to	JA	port	of	the	Basys3	board)	is	integrated	to	the	top	module	to	realize	the
exact	vending	machine	behavior.	As	in	the	previous	application,	the
steppermotor	module	is	integrated	as	an	IP	block	to	the	project;	it	asks	for	the
rotation	degree	in	the	initialization	window.	Set	it	to	360	degrees	for	this

application.	For	ease	of	implementation,	only	the	first	product	is	handled	this
way.	Therefore,	when	the	customer	buys	the	first	product,	the	stepper	motor
does	a	full	turn	in	clockwise	direction.

13.9	Digital	Clock
We	can	finalize	the	digital	clock	by	adding	alarm	and	chronometer	modules	to

it.	We	provide	the	Verilog	description	of	the	alarm	module	in	Listing	13.12.
This	module	is	the	simplified	version	of	the	digital	clock	module	such	that	it
only	increments	hour	and	minute	digits	with	the	button	press.
We	provide	the	top	module	for	the	final	digital	clock	application	in	Listing

13.13.	Within	this	module,	sw	input	determines	the	mode	of	the	system.	Hence,
if	sw	is	00,	the	regular	clock	operation	is	done.	When	sw	is	set	to	01,	the	system
enters	the	alarm	mode	and	the	user	can	set	the	alarm	with	btnU	and	btnR	buttons.
When	the	alarm	is	activated,	the	leftmost	eight	LEDs	on	the	Basys3	board	flash
for	60	seconds.	When	sw	is	set	to	11,	the	system	enters	the	chronometer	mode.
Here,	the	digital	clock	module	is	used	again	without	its	outputs.	With	every	btnU
press,	the	chronometer	counts	or	pauses.	When	the	user	presses	btnC,	the	module
clears	the	output	and	gets	ready	for	the	next	count.	All	three	modes	can	work	at
the	same	time.	Therefore,	if	the	user	wants	to	use	the	chronometer	he	or	she	can
do	so	without	disturbing	the	digital	clock	and	alarm	operations.

Listing	13.11	Vending	Machine	in	Final	Form	Implemented	on	the	Basys3
Board	in	Verilog

Listing	13.12	Verilog	Description	of	the	Alarm	Module	for	Digital	Clock

Listing	13.13	Digital	Clock	in	Final	Form	Implemented	on	the	Basys3	Board
in	Verilog

13.10	Moving	Wave	via	LEDs
In	this	application,	we	will	form	a	moving	wave	application	via	LEDs	on	the

Basys3	board.	To	do	so,	we	will	benefit	from	the	pulse	width	modulation
(PWM)	which	forms	digital	periodic	pulses	with	varying	width	(duty	cycle).
Hence,	the	PWM	is	used	to	obtain	analog	signals	from	a	digital	system	most	of
the	times	[32].	We	provide	the	Verilog	description	to	generate	a	PWM	signal	in
Listing	13.14.	This	module	has	two	inputs.	These	are	clk	(main	clock	signal)
and	dutyc	(duty	cycle).	The	output	of	the	module	is	pwm_out	which	is	the	PWM
signal.
The	working	principles	of	the	PWM	generator	module	in	Listing	13.14	are	as

follows.	There	is	a	four-bit	pwmc	vector	in	the	module.	What	we	do	is	basically
incrementing	pwmc	in	every	clock	cycle	and	comparing	it	with	dutyc.	If	pwmc	is
smaller	than	or	equal	to	dutyc,	then	the	output	will	be	at	logic	level	1,	otherwise
it	will	be	at	logic	level	0.	We	divide	the	full	period	of	a	square	wave	into	16
parts.	The	output	starts	at	logic	level	1.	With	dutyc,	we	decide	when	it	goes	to
logic	level	0.	Hence,	for	a	50%	duty	cycle,	we	should	set	dutyc	to	seven	as	half
of	its	maximum	value.	Here,	we	use	the	Clock	Wizard	IP	for	frequency	division.
Hence,	clock-based	operations	within	the	module	are	done	appropriately.
We	provide	the	top	module	for	the	moving	wave	application	in	Listing	13.15.

This	module	uses	the	PWM_generator	module	to	drive	all	16	LEDs	on	the	Basys3
board	with	different	duty	cycles.	To	have	a	moving	wave	effect	visible	to	our
eyes,	we	apply	the	frequency	division	(with	a	counter	having	28	bits)	to	the	main
clock	of	the	Basys3	board.	First	three	switches	on	the	Basys3	board	can	be	used
to	adjust	speed	of	the	moving	wave.

Listing	13.14	Verilog	Description	of	PWM	Module

Listing	13.15	Moving	Wave	Application	Implemented	on	the	Basys3	Board
in	Verilog

We	can	further	improve	the	moving	wave	application	by	adding	a	joystick	as
input	medium.	Hence,	the	user	can	decide	on	the	wave	movement	direction
using	it.	To	do	so,	the	XADC	module	should	also	be	used	in	connection	with	the
joystick.

13.11	Translator
We	can	design	a	digital	system	to	translate	voice	commands	from	English	to

Spanish	(or	another	language)	and	show	them	on	a	16×2	LCD.	The	system	will
have	two	parts.	The	first	part	will	recognize	the	spelled	out	English	word.	We
can	use	the	EasyVR	shield	for	this	purpose	[60].	This	module	has	predefined
speaker-independent	word	sets.	Also,	you	can	create	your	own	speaker-
dependent	word	set.	In	the	second	part	of	the	translator	system,	we	will	get	the
recognition	result	and	form	a	state	machine	in	the	FPGA	to	provide	the
translated	word	corresponding	to	the	recognized	one.	Then,	this	word	is	shown
on	the	LCD.
The	LCD	we	have	used	in	our	system	is	WH1602N	with	a	built-in	controller

ST7066	or	equivalent.	To	use	the	LCD	display,	we	need	a	Verilog	description.
We	provide	such	an	LCD	driver	module	in	Listing	13.16.	This	module	has	four
inputs:	clk,	reset,	wr_en,	and	data_in.	The	main	clock	signal,	clk,	is	expected
to	be	100	MHz.	Active-high	reset	signal	resets	the	operation	and	the	module
waits	for	an	active-high	write	enable	wr_en	signal.	data_in	is	eightbit	data	that
will	be	transmitted	to	the	display.	The	module	has	three	outputs:	data_out
(eightbit	data	output),	en	(enable	signal	to	drive	the	LCD),	and	rs
(data/instruction	selection	signal	for	LCD).

Listing	13.16	Verilog	Description	of	LCD	Driver	Module

The	working	principle	of	the	LCD	driver	module	(as	a	state	machine)	is	as
follows.	The	module	starts	in	INIT	state	where	it	initializes	the	display	by	the
predefined	eightbit	commands.	Using	them,	we	set	the	display	for	one	line	and	5
×	8	dots;	then	cleared	the	display	screen;	set	the	cursor	direction;	and	changed
the	cursor	to	blinking	mode.	After	initialization,	the	machine	goes	to	WAIT	state
where	it	waits	for	wr_en	signal	to	go	to	logic	level	1.	Once	this	happens,	the
machine	goes	to	WRITE	state.	Here,	it	transfers	data_in	to	data_out	and	waits
for	1	microsecond.	Afterward,	the	machine	turns	back	to	WAIT	state	by
incrementing	clear	vector	by	one	and	waits	for	another	wr_en	signal.	Once
clear	reaches	15	in	decimal	form,	that	means	it	reached	the	end	of	the	line	and	it
turns	back	to	INIT	state	and	clears	the	display.
We	can	connect	the	LCD	to	the	Basys3	board	as	follows.	The	LCD’s	eightbit

data	bus	line	(DB0	to	DB7)	should	be	connected	to	JA	port	of	the	board	(starting
from	JA[0]	to	JA[7]).	Enable	signal	of	the	LCD	(E)	should	be	connected	to
JB[0].	Similarly,	RS	signal	of	the	LCD	should	be	connected	to	JB[2].	You	can
connect	the	R/W	port	of	the	LCD	to	ground	since	we	will	always	be	in	write
mode.	Also,	do	not	forget	to	supply	VDD	port	of	LCD	with	5	V	and	connect
VSS	to	ground.	There	is	a	contrast	port	VO	on	the	LCD.	This	port	can	be
connected	to	ground	for	maximum	contrast.	Finally,	A	and	K	ports	control	the
back	light	of	the	LCD	screen.	You	can	set	A	to	5	V	or	3.3	V,	and	K	goes	to	the
ground	to	lit	your	LCD	screen.
The	EasyVR	shield	communicates	through	the	UART	interface.	Hence,	we

can	use	the	UART	transmitter	and	receiver	blocks	introduced	in	Chap.	12.	After
activating	the	EasyVR	shield,	it	recognizes	words	in	its	predefined	word	set	1	as
default.	This	word	set	includes	English	words	Action,	Move,	Turn,	Run,	Look,
Attack,	Stop,	and	Hello.	The	Spanish	translation	of	these	words	are	Accion,
Movimiento,	Giro,	Correr,	Mirar,	Ataque,	Detener,	and	Hola,	respectively.
Assuming	that	the	reader	does	not	have	an	EasyVR	module,	we	simulate	the

translation	operation	by	feeding	input	signals	via	the	first	eight	switches	of	the
Basys3	board.	We	provide	the	Verilog	description	of	the	top	module	for	the
translator	constructed	this	way	in	Listing	13.17.	This	module	has	three	inputs:
clk	(main	clock	of	Basys3),	reset	(active-high	reset	signal),	and	sw	vector	(first
eight	switches	on	the	Basys3	board).	The	outputs	of	the	module	are	rs,	en,	and
data_out,	all	of	which	are	LCD	driving	signals.

Listing	13.17	Translator	Implemented	on	the	Basys3	Board	in	Verilog

The	top	module	in	Listing	13.17	uses	the	LCD_driver	module	to	show	the
translation	results.	The	top	module	has	an	internal	counter	which	counts	up	to
160	milliseconds.	If	reset	signal	goes	to	logic	level	1,	then	counter,	wr_en,	and
index	values	will	be	equal	to	logic	level	0.	When	counter	reaches	clk_param
(corresponding	to	160	milliseconds),	index	of	data	memory	is	loaded	into
eightbit	character	vector.	This	is	directly	connected	to	data_in	of	the
LCD_driver	module.	There	is	a	case	statement	at	the	end	of	the	top	module
which	loads	Spanish	translation	corresponding	to	the	given	command	(or
English	word).	For	our	application,	depending	on	which	switch	is	at	logic	level
1,	the	corresponding	word	is	loaded	to	data	memory.	Hence,	each	character	of
this	word	is	displayed	with	the	help	of	the	LCD_driver	module.	The	reader	can
modify	this	section	if	translation	to	another	language	is	desired.

13.12	Air	Freshener	Dispenser
We	can	modify	the	air	freshener	dispenser	system	developed	for	the	MSP430

microcontroller	to	work	on	the	Basys3	board	[32].	The	system	will	have	four
different	programs	to	spray	fresh	odor	in	5-,	10-,	15-,	and	20-second	intervals.
These	values	should	be	in	minutes	in	an	actual	system.	However,	we	set	such
values	to	observe	the	system	output.	The	system	should	have	a	counter	for	these
operations.	When	counter	reaches	the	designated	time	value,	the	kit	sprays	the
fresh	odor	and	restarts	counting	again.	We	can	use	two	switches	to	select	among
four	programs.	Besides,	there	should	be	an	instant	spray	button.	When	it	is
pressed,	the	fresh	odor	should	be	sprayed	and	the	counter	should	be	reset.	When
the	user	selects	another	program,	the	counter	should	restart	again.	There	should
also	be	an	on/off	switch	for	the	system.	Spraying	fresh	odor	can	be	indicated	by
blinking	an	LED	on	the	board	for	three	seconds.

13.13	Obstacle-Avoiding	Tank
We	can	modify	the	obstacle-avoiding	tank	system	developed	for	the	MSP430

microcontroller	to	work	on	the	Basys3	board	[32].	Hence,	we	will	build	a	tank
which	is	driven	by	two	stepper	motors.	The	proximity	sensors	on	the	front	edges
of	the	tank	will	be	used	to	sense	obstacles	on	the	way.	The	tank	will	change	its
direction	by	controlling	motor	speeds	accordingly.	The	proximity	sensor	we
have	used	in	previous	applications	can	also	be	employed	for	this	application.	By
using	the	tuning	screw	on	the	sensor,	the	designer	can	adjust	the	distance	the
tank	will	turn	when	it	faces	an	obstacle.
The	sensors	can	be	connected	to	JB	or	JC	ports	of	the	Basys3	board.	The

motor	driver	should	also	be	connected	to	the	JA	port	of	the	board.	Since	this

motor	driver	should	also	be	connected	to	the	JA	port	of	the	board.	Since	this
application	will	be	integrated	on	a	tank,	the	board	itself	can	be	powered	by	a
battery	to	ensure	autonomy	of	the	tank.	Hence,	5	V	has	to	be	applied	to	external
power	pins	of	the	board.	If	the	battery’s	voltage	is	above	5	V,	a	regulator	should
be	used.

13.14	Intelligent	Washing	Machine
We	can	modify	and	improve	the	washing	machine	system	developed	for	the

MSP430	microcontroller	to	work	on	the	Basys3	board	[32].	The	washing
machine	will	be	simulated	by	a	stepper	motor.	Hence,	the	reader	should	check
how	it	works	in	the	car	park	occupied	slot	counting	system.
The	washing	machine	is	controlled	by	five	buttons.	The	two	of	them	are	for

the	main	on/off	and	rotation	speed.	The	remaining	three	buttons	are	for	program
selection	as	follows:

•	Prewash:	30	rotations	in	one	direction,	then	30	rotations	in	the	other
direction
•	Normal	wash:	100	rotations	in	one	direction,	then	100	rotations	in	the
other	direction
•	Final	spin:	50	rotations	in	one	direction,	but	faster	than	prewash	and
normal	wash

The	normal	wash	program	can	be	improved	by	adding	intelligence	to	it.	To	do
so,	we	can	include	an	IR	transmitter	and	receiver	LED	pair.	The	IR	transmitter
emits	IR	light	when	fed	with	voltage.	The	IR	receiver	LED	produces	voltage
when	it	absorbs	IR	light.	We	can	form	a	structure	by	using	the	IR	transmitter	and
receiver	such	that	when	water	passing	through	them	is	dirty,	no	light
transmission	occurs.	Hence,	the	output	of	the	receiver	LED	can	be	taken	as	logic
level	0.	When	the	water	passing	through	these	LEDs	is	clean,	the	light
transmission	occurs.	Hence,	the	output	of	the	receiver	LED	can	be	taken	as	logic
level	1.	Therefore,	when	the	water	is	dirty,	normal	wash	program	is	repeated
again.	This	program	ends	when	water	becomes	clean.
When	the	main	on/off	button	is	pressed,	the	system	is	activated.	To	indicate

this,	the	rightmost	LED	on	the	Basys3	board	will	turn	on.	In	this	state,	all
programs	(prewash,	normal	wash,	and	final	spin)	can	be	performed.	Each
program	can	be	selected	by	a	specific	button.	There	is	an	extra	button	for
adjusting	the	rotation	speed	as	slow	and	fast.	Depending	on	the	selection,	the
leftmost	LED	on	the	board	will	be	either	on	or	off.	When	the	main	on/off	button
is	pressed	again,	the	system	will	be	deactivated.	To	indicate	this,	the	rightmost
LED	will	turn	off.

LED	will	turn	off.

13.15	Non-Touch	Paper	Towel	Dispenser
We	can	modify	the	non-touch	paper	towel	dispenser	system	developed	for	the

MSP430	microcontroller	to	work	on	the	Basys3	board	[32].	The	system	has	a
light-dependent	resistor	(LDR).	When	the	user	crosses	his	or	her	hand	by	an
LDR,	this	will	indicate	that	the	paper	towel	is	needed.	This	should	start	the
timing	module.	The	rightmost	LED	on	the	Basys3	board	will	turn	on	for	four
seconds	to	indicate	that	the	paper	towel	is	fed.	During	this	time,	no	other	paper
towel	request	is	accepted.	When	the	waiting	time	is	over,	the	LED	will	turn	off.
The	system	will	wait	for	a	new	paper	towel	request.
We	can	also	put	a	DC	motor	instead	of	an	LED.	To	do	so,	we	should	set	the

PWM	frequency	to	5	kHz.	The	duty	cycle	of	the	PWM	signal	should	be	50%.
The	DC	motor	will	rotate	for	four	seconds	to	simulate	the	feeding	of	the	paper
towel.	Again,	no	other	paper	towel	request	is	accepted	during	this	time.	After	the
waiting	time	is	over,	the	motor	will	stop.

13.16	Traffic	Lights
We	can	modify	the	traffic	light	system	developed	for	the	MSP430

microcontroller	to	work	on	the	Basys3	board	[32].	The	traffic	light	is	located	on
a	road	which	has	two-sided	car	traffic	and	a	crosswalk	for	pedestrians.	There	are
green	and	red	lights	for	both	cars	and	pedestrians.	Also	there	are	buttons	on	each
side	of	the	crosswalk	for	pedestrians.	The	green	light	duration	for	cars	is	60
seconds.	During	this	time,	if	any	of	the	buttons	are	pressed,	light	turns	to	red
after	60	seconds	for	cars.	Then,	the	green	light	turns	on	after	two	seconds	for
pedestrians.	The	green	light	duration	for	pedestrians	is	20	seconds.	If	the	button
is	not	pressed,	that	means	there	are	no	pedestrian.	Hence,	the	green	light	for	cars
stays	on.	If	a	pedestrian	presses	the	button	in	any	time	after	60	seconds,	it	turns
to	red	for	cars.	Then	the	system	waits	for	two	seconds	and	the	green	light	turns
on	for	pedestrians	to	cross.
To	implement	this	system	on	the	Basys3	board,	we	should	use	the	available

LEDs	on	it	to	simulate	red	and	green	lights.	Moreover,	we	should	also	form	a
counter	module	to	indicate	one	second	as	we	have	done	in	digital	clock	and	car
park	occupied	slot	counting	systems.

13.17	Car	Parking	Sensor	System
We	can	modify	the	car	parking	sensor	system	developed	for	the	MSP430

microcontroller	to	work	on	the	Basys3	board	[32].	The	system	will	start	working

microcontroller	to	work	on	the	Basys3	board	[32].	The	system	will	start	working
when	the	proximity	sensor	reads	a	value	corresponding	to	one	meter.	This	value
will	be	shown	by	the	sevensegment	display	and	turning	on	all	16	LEDs	on	the
board.	Afterward,	as	the	distance	between	the	car	and	obstacle	decreases,	LEDs
start	to	turn	off	with	respect	to	distance.	As	the	distance	falls	lower	than	50	cm,
then	the	buzzer	starts	working.	The	frequency	of	the	sound	produced	by	the
buzzer	will	increase	with	respect	to	proximity	such	that	when	the	car	is	five
centimeters	close	to	the	obstacle,	the	buzzer	will	have	the	highest	frequency
value.	Note	that	the	proximity	sensor	used	in	this	application	will	be	different
from	the	previously	used	ones.	Here,	we	will	need	a	proximity	sensor	with
analog	output.

13.18	Body	Weight	Scale
The	goal	of	this	application	is	building	a	body	weight	scale	we	use	in	our

homes.	Basically,	we	need	four	load	cells	(also	called	strain	gauge)	to	be
screwed	to	legs	of	the	scale.	These	load	cells	convert	the	applied	force	on	them
to	the	electrical	voltage.	The	XADC	module	on	the	Basys3	board	can	be	used	to
convert	this	voltage	to	digital	form.	Note	that	an	instrumentation	amplifier	may
be	needed	between	the	sensor	and	Basys3	board	depending	on	the	sensor	output.
The	weight	of	the	user	should	be	displayed	on	the	sevensegment	display.	The
user	should	also	be	able	to	store	the	last	measurement	in	memory	of	the	device.
To	avoid	false	measurements,	the	system	should	wait	for	the	sensor	to	get
stabilized.	Several	measurements	should	be	taken	and	their	average	should	be
displayed	on	the	sevensegment	display	or	saved	in	memory.

13.19	Intelligent	Billboard
Nowadays,	companies	want	to	measure	the	impact	of	an	advertisement

published	on	a	billboard.	One	way	of	doing	this	is	extracting	statistics	based	on
who	viewed	or	paid	attention	to	the	billboard	while	the	advertisement	is	on.	We
can	develop	a	prototype	system	for	this	purpose.	Our	system	is	composed	of	a
proximity	sensor	and	the	GSM	module.	The	proximity	sensor	with	digital	output
that	we	used	in	previous	applications	in	this	book	can	also	be	used	for	this
system	as	well.	The	proximity	sensor	will	be	faced	to	people	passing	by.	When
someone	gets	closer	to	the	billboard	to	read	the	advertisement,	a	counter	in	the
system	will	increase.	Since	the	billboard	is	an	autonomous	device	located	in	the
public	area,	we	have	to	integrate	GSM	capability	to	send	the	count	results	to	the
company.	Here,	the	GSM	Click	module	offered	by	Microelektronika	can	be	of
use	since	it	has	an	interface	with	the	UART	communication	[61].	Previously
introduced	UART	modules	can	be	used	for	this	purpose.

13.20	Elevator	Cabin	Control	System
We	can	design	a	prototype	elevator	cabin	control	system	using	the	Basys3

board.	Our	elevator	works	in	a	building	with	six	floors.	We	will	use	the	first
three	switches	on	the	board	(sw[0]	to	sw[2])	to	identify	which	floor	we	are
calling	the	cabin	from.	We	also	need	an	elevator	call	button.	Let’s	assign	btnC
on	the	board	for	this	purpose.	We	also	need	six	buttons	inside	the	cabin	to
indicate	the	target	floor.	We	will	use	the	next	six	switches	(sw[3]	to	sw[8])	for
this	purpose.	For	example,	after	the	elevator	door	is	closed	and	sw[8]	goes	to
logic	level	1,	the	elevator	should	go	to	the	sixth	floor.
The	system	works	as	follows.	The	cabin	starts	at	the	first	floor.	If	someone	at

this	floor	presses	the	call	button,	the	door	of	the	cabin	will	open.	If	someone
from	another	floor	presses	the	call	button,	the	cabin	moves	to	that	floor.	Assume
that	the	travel	time	between	each	floor	is	three	seconds.	When	the	cabin	reaches
the	target	floor,	its	door	opens	and	stays	in	that	state	for	ten	seconds.	Since	this	is
a	prototype	system,	we	assumed	one	user	at	a	time.	Therefore,	scheduling	issues
within	the	elevator	control	are	avoided.	However,	we	suggest	that	the	reader
think	about	the	possibility	as	well	of	a	more	advanced	elevator	cabin	control
system.
The	first	six	LEDs	on	the	Basys3	board	will	show	which	floor	the	cabin	is	at.

The	seventh	LED	shows	if	the	elevator	is	busy	or	not.	The	eighth	LED	indicates
whether	the	door	is	open	or	closed.	At	this	stage,	these	are	sufficient	for	a
prototype	system.	We	can	improve	the	system	further	by	adding	a	proximity
sensor	for	the	cabin	door.	Hence,	if	a	user	is	at	the	door,	it	stays	open.	Besides,
we	can	add	two	stepper	motors:	one	to	move	the	cabin	and	the	other	to
open/close	the	cabin	door.

13.21	Digital	Table	Tennis	Game
This	project	aims	to	develop	a	digital	table	tennis	game	to	be	run	on	the

Basys3	board.	Rules	of	the	game	are	as	follows:

•	There	are	two	players	controlling	sw[15]	and	sw[0]	on	the	board.	These
switches	act	as	rackets	to	send	the	ball	to	the	other	side.
•	The	ball	is	represented	by	a	moving	LED.
•	When	the	first	user	(controlling	sw[15])	sends	the	ball,	the	game	starts.
•	The	second	user	should	respond	to	the	coming	ball	by	raising	the	racket
(turning	on	the	switch)	when	the	ball	reaches	there.	Since	Basys3	has	16
LEDs,	the	racket	can	be	raised	on	last	two	LEDs.	To	avoid	any	confusion,
both	players	should	keep	their	rackets	low	before	striking	the	ball.

•	If	the	racket	is	raised	early	by	a	player,	it	is	taken	as	a	fault	and	the	other
user	gets	the	point.
•	If	one	player	misses	the	ball,	the	other	player	gets	the	point.
•	The	game	has	four	difficulty	levels	controlled	by	btnU	and	btnL.	The
difficulty	level	is	directly	related	to	the	speed	of	the	moving	ball.
•	The	difficulty	level	is	shown	on	the	rightmost	sevensegment	display	digit.
•	The	score	of	the	players	are	shown	on	the	two	leftmost	sevensegment
display	digits.
•	The	edge	detector	module	(in	Listing	10.33)	can	be	used	in	the	project	to
detect	switch	movements.

13.22	Customer	Counter
We	can	design	a	system	on	the	Basys3	board	to	count	customers	in	a	shopping

mall	with	designated	doors	for	entrance	and	leaving.	To	do	so,	we	should	place	a
proximity	sensor	to	each	door.	Hence,	we	can	detect	whether	a	customer	passing
through	the	gate	is	entering	or	leaving.	The	customer	counter	is	reset	as	the	mall
opens.	The	count	is	increased	by	one	for	each	entering	customer.	It	is	decreased
by	one	for	each	leaving	customer.	The	total	number	of	customers	in	the	mall
should	be	shown	on	the	sevensegment	display.	As	the	shopping	mall	closes,	the
security	check	will	be	done	via	the	count	value.	If	no	one	is	left	in	the	mall,	gates
will	be	locked.	This	can	be	simulated	by	an	LED	on	the	board.	We	can	further
expand	the	system	by	adding	a	bluetooth	module	to	each	proximity	sensor
section	such	that	they	communicate	with	a	main	module.	Hence,	the	two
follower	modules	and	one	leader	module	will	be	needed	in	developing	the
system.

13.23	Frequency	Meter
Frequency	meter	is	a	device	to	measure	frequency	(repetition	rate	per	second)

of	an	analog	periodic	signal.	We	can	design	such	a	system	using	the	Basys3
board.	Assume	that,	the	average	value	of	the	analog	signal	is	discarded.	Hence,	it
oscillates	around	zero.	We	can	use	the	XADC	module	to	detect	zero	crossings	of
the	periodic	signal.	The	total	number	of	zero	crossings	within	one	second	can	be
used	to	calculate	the	frequency	of	the	signal.	We	can	display	the	measured
frequency	on	the	sevensegment	display	of	the	board.	Let’s	assume	that	we	assign
three	digits	for	the	measured	frequency	value.	Hence,	the	frequency	values
between	0	and	999	Hz	can	be	measured	by	the	system.

13.24	Pedometer
Pedometer	is	a	device	that	counts	steps	when	you	carry	it	on.	We	can	design	a

pedometer	using	a	three-axis	accelerometer	sensor	and	the	Basys3	board.	We
can	pick	one	of	the	available	sensors	working	in	similar	ways.	They
communicate	over	the	I2	C	interface	providing	16	bits	of	data	in	each	direction.
Hence,	the	I2	C	module	introduced	in	Chap.	12	will	be	of	use	here.	You	can
connect	the	sensor	to	one	of	the	available	PMOD	connectors	on	the	board.	Once
you	get	the	acceleration	data,	you	have	some	work	on	it	to	extract	steps.	There	is
a	good	article	explaining	how	to	do	this	[62].	Therefore,	we	strongly	suggest
applying	the	method	described	there.	Once	you	understand	the	steps,	you	can
count	them	and	let	the	user	know	when	the	total	number	of	steps	reach	a	limit
(let’s	say	per	day).	We	can	expand	this	module	by	using	a	bluetooth	module
(such	as	HC-06)	to	send	step	counts	to	your	cell	phone.

CHAPTER	14

What	Is	Next?

Digital	systems	introduced	up	to	now	were	fairly	complex	such	that	they	can
be	described	by	an	hardware	description	language	(HDL)	(either	Verilog	or
VHDL).	There	may	be	complex	digital	systems	needing	more	powerful	and
high-level	description.	Xilinx	offers	such	a	platform	called	Vivado	High-Level
Synthesis	(HLS).	Through	it,	the	user	can	describe	operational	characteristics	of
a	digital	system	either	in	C	or	C++	language.	The	result	can	be	converted	to	an
IP	block	to	be	used	in	the	Verilog	or	VHDL	description.	We	will	explore	how
this	can	be	done	in	this	chapter.	To	do	so,	we	will	start	with	Vivado	HLS.	Then,
we	will	develop	a	project	under	it	to	generate	an	IP.	Finally,	we	will	show	how
the	generated	IP	can	be	used	in	an	HDL	in	Vivado.	Therefore,	the	reader	can
understand	steps	to	be	followed	for	such	an	implementation.	Topics	introduced
in	this	chapter	are	more	complex	compared	to	the	ones	introduced	in	previous
chapters.	Moreover,	it	is	not	possible	for	us	to	cover	them	in	depth	here.
Therefore,	we	titled	this	chapter	“What	Is	Next?”	to	emphasize	that	topics
covered	in	this	chapter	should	also	be	included	in	an	advanced	book	focusing	on
these	issues.

14.1	Vivado	High-Level	Synthesis	Platform
Vivado	HLS	is	the	platform	that	can	be	used	to	develop	a	complex	digital

system	benefiting	from	the	power	of	C	or	C++	languages.	Moreover,	it	allows
the	user	to	represent	the	developed	system	as	an	IP	block	to	be	used	in	Vivado.
As	we	were	writing	this	book,	Vivado	HLS	was	coming	within	the	free	Vivado
WebPACK	edition.	Therefore,	there	is	no	need	of	extra	installation	process	for
it.
Although	Vivado	HLS	is	a	powerful	platform,	it	is	fairly	complex	to	master.

Xilinx	offers	valuable	references	for	this	purpose	[63–65].	We	strongly	suggest
the	reader	to	review	them.	Xilinx	also	offers	several	example	projects	under
Vivado	HLS	to	be	used	as	a	starting	point.	These	will	serve	as	valuable	sources
in	using	the	platform.	We	will	provide	a	simple	project	(modified	from	one	of

in	using	the	platform.	We	will	provide	a	simple	project	(modified	from	one	of
Xilinx’s	examples)	to	explain	how	a	fresh	project	can	be	developed	in	Vivado
HLS	next.

14.2	Developing	a	Project	in	Vivado	HLS	to
Generate	IP
After	installing	Vivado	WebPACK,	the	reader	should	see	a	separate	icon

(titled	Vivado	HLS	2016.3)	on	his	or	her	desktop	for	the	Vivado	HLS.	As	this
icon	is	pressed	twice,	Vivado	HLS	will	start	with	the	welcome	screen	as	in	Fig.
14.1.	Through	this	screen,	the	user	can	create	a	new	project;	open	an	existing
project;	or	open	an	example	project	provided	by	Xilinx.	Moreover,	tutorials	and
user	guides	for	Vivado	HSL	can	also	be	reached	from	this	screen.

FIGURE	14.1	Vivado	HLS	welcome	screen.

Let’s	create	a	new	project	in	the	welcome	screen.	Assume	that	we	want	to	add

two	eightbit	numbers.	As	we	press	“Create	New	Project”	in	the	welcome	screen,
a	new	window	appears	asking	for	the	“Project	Name”	and	“Location.”	Let	the
project	name	be	adder_HLS.	The	reader	should	also	find	a	suitable	location.	We
pick	this	location	as	H:\Xilinx_Projects.	As	we	press	“Next,”	a	new	pop-up
window	titled	“Add/Remove	Files”	appears	asking	for	the	“Top	Function”	in	the
project.	As	for	now,	let’s	leave	it	empty.	As	we	press	“Next,”	the	pop-up
window	asks	for	the	testbench	file	to	be	used.	Let’s	leave	this	one	also	empty.
As	we	press	“Next,”	a	new	pop-up	window	titled	“Solution	Configuration”
appears	as	in	Fig.	14.2.	Here,	we	should	set	the	“Solution	Name,”	“Clock
Period,”	and	“Uncertainty.”	Let’s	leave	them	as	they	are.	We	should	also	select
the	FPGA	platform	from	“Part	Selection.”	Let’s	target	the	Basys3	board.	Hence,
set	the	part	name	as	xc7a35tcpg236-1.	We	can	press	“Finish”	to	create	the
project.

FIGURE	14.2	Solution	configuration	window.

After	the	project	is	created,	a	new	screen	appears	as	in	Fig.	14.3.	The	user	can
adjust	all	properties	of	the	project	through	this	interface.	Let’s	first	add	the	main
file	titled	adder.c	to	the	project.	To	do	so,	right-click	on	the	“Source”	item	in
the	“Explorer”	section;	select	the	“New	File”	option	and	create	the	file.	Let’s
copy	the	C	source	code	in	Listing	14.1	to	the	created	file.

FIGURE	14.3	Project	explorer	window.

As	can	be	seen	in	Listing	14.1,	the	adder.c	file	only	has	a	function	definition
adder.	Input	to	this	function	are	two	eightbit	numbers	inA	and	inB	defined	by
type	int8.	The	output	of	the	function	is	out1	defined	as	a	pointer	to	another
eightbit	number.	The	adder.c	file	also	refers	to	a	header	file	which	we	named	as
adder.h	available	in	Listing	14.2.	We	should	also	add	this	file	to	the	“Source”
directory	under	the	project	following	previous	steps.	This	structure	should	be
kept	since	Vivado	HSL	requires	the	function	to	be	defined	in	the	header	file.
Hence,	it	can	be	converted	to	an	IP	block.
Vivado	HLS	requires	a	testbench	file	to	test	the	C	code.	Let’s	call	the

testbench	file	adder_tb.c.	This	testbench	file	will	be	as	presented	in	Listing
14.3.	We	should	also	add	it	to	the	“Source”	directory	as	explained	before.
As	all	three	files	are	added	to	the	project,	we	should	adjust	“Project	Settings”

by	pressing	the	related	icon	in	the	project	explorer	window.	There,	we	should
declare	the	“Top	Function”	under	the	“Synthesis”	section.	After	this	operation,
the	window	should	look	like	as	shown	in	Fig.	14.4a.	We	should	also	add	the
“Testbench	Files”	under	the	“Simulation”	section.	After	this	operation,	the

window	should	look	like	as	shown	in	Fig.	14.4b.	As	we	press	“Ok,”	we	are
ready	to	proceed.

FIGURE	14.4	Project	settings	window	after	adding	C	source	and	testbench	files.

Listing	14.1	The	adder.c	Source	Code

Listing	14.2	The	adder.h	Header	File	to	Be	Used	in	adder.c

Listing	14.3	Testbench	File	to	Be	Used	in	the	Vivado	HLS	Project

We	should	generate	an	IP	block	corresponding	to	the	project.	Therefore,	we
should	follow	the	steps	Run	C	Simulation	→	Run	C	Synthesis	→	Export	RTL.
Vivado	HLS	offers	extra	test	and	validation	steps	at	this	point.	The	reader	can

check	the	mentioned	references	on	how	these	operations	can	be	done.	The
generated	IP	block	can	be	found	in	the	folder
H:\Xilinx_Projects\adder_HLS\solution1\impl\ip.	Next,	we	will	use	this	IP
block	in	Vivado.

14.3	Using	the	Generated	IP	in	Vivado
To	use	the	generated	IP	block,	let’s	form	a	Vivado	project	following	steps	in

Chap.	4.	Let’s	call	the	project	adder_Vivado.	We	should	first	add	the	generated
IP	block	to	the	IP	catalog	following	the	steps	in	Sec.	4.7.	Based	on	the	Vivado
HLS	project	settings,	the	specific	IP	directory	to	be	added	will	be	at
H:\Xilinx_Projects\adder_HLS\solution1\	impl\ip.	Afterward,	the
generated	IP	should	be	seen	in	the	IP	catalog	under	“User	Repository”	and
“Vivado	HLS	IP.”	We	can	add	it	to	the	project	by	double-clicking	on	it.
Let’s	form	a	top	module	and	add	the	instantiation	of	the	adder	IP.	The	result

will	be	as	presented	in	Listing	14.4.	The	reader	can	form	a	testbench	file	to	test
this	top	module.	The	VHDL	version	of	the	top	module	will	be	as	presented	in
Listing	14.5.

Listing	14.4	Verilog	Top	Module	Using	the	Adder	IP	Generated	in	Vivado
HLS

Listing	14.5	VHDL	Top	Module	Using	the	Adder	IP	Generated	in	Vivado
HLS

14.4	Summary
Verilog	and	VHDL	are	not	the	only	options	in	describing	complex	digital

systems.	The	Vivado	HLS	offers	an	advanced	platform	to	develop	complex
systems	in	C	or	C++	language.	The	developed	system	can	be	converted	to	an	IP
block	to	be	used	in	either	Verilog	or	VHDL.	We	briefly	introduced	in	this

block	to	be	used	in	either	Verilog	or	VHDL.	We	briefly	introduced	in	this
chapter	methods	on	how	this	can	be	done.	We	strongly	suggest	that	the	reader
master	these	topics	using	references	offered	by	Xilinx.

14.5	Exercises
14.1			Modify	the	application	introduced	in	Sec.	14.2	to

a.	subtract	two	eightbit	numbers.
b.	multiply	two	eightbit	numbers.
c.	divide	two	eightbit	numbers.

14.2			Modify	the	application	introduced	in	Sec.	14.2	to	add	two	16-bit
numbers.
14.3			Repeat	Exercise	14.1	using	two	16-bit	numbers	as	input.
14.4			Pick	an	example	project	under	the	Vivado	HLS	offered	by	Xilinx.
Apply	steps	introduced	in	this	chapter	to	implement	and	run	the	project.
Observe	how	a	complex	digital	system	can	be	developed	this	way.
14.5			Using	Exercise	14.4,	analyze	how	the	C	testbench	file	can	be	used	for
a	detailed	analysis	in	Vivado	HLS.

References

1.			Xilinx.	(2015).	7	Series	FPGAs	Select	IO	Resources	User	Guide,	ug471
(v1.6)	ed.
2.			Xilinx.	(2014).	7	Series	FPGAs	Configurable	Logic	Block	User	Guide,
ug474	(v1.7)	ed.
3.			Xilinx.	(2014).	7	Series	DSP48E1	Slice	User	Guide,	ug479	(v1.8)	ed.
4.			Xilinx.	(2015).	7	Series	FPGAs	Clocking	Resources	User	Guide,	ug472
(v1.11.2)	ed.
5.			Xilinx.	(2015).	7	Series	FPGAs	and	Zynq-7000	All	Programmable	SoC
XADC	Dual	12-Bit	1	MSPS	Analog-to-Digital	Converter	User	Guide,
ug480	(v1.7)	ed.
6.			Xilinx.	(2013).	Efficient	Implementation	of	Analog	Signal	Processing
Functions	in	Xilinx	All	Programmable	Devices,	wp442	(v1.0)	ed.
7.			Xilinx.	(2015).	Driving	the	Xilinx	Analog-to-Digital	Converter,
xapp795	(v1.1)	ed.
8.			Xilinx.	(2014).	7	Series	FPGAs	GTP	Transceivers	User	Guide,	ug482
(v1.8)	ed.
9.			Xilinx.	(2016).	7	Series	FPGAs	Integrated	Block	for	PCI	Express	v3.3
LogiCORE	IP	Product	Guide	Vivado	Design	Suite,	pg054	ed.
10.			Digilent,	https://reference.digilentinc.com/basys3:refmanual.
Accessed	January	2,	2017.
11.			Microchip.	(2006).	PIC24FJ128GA	Family	Data	Sheet,	ds39747c	ed.
12.			FTDI.	(2012).	FT2232H	Dual	High-Speed	USB	to	Multipurpose
UART/FIFO	IC	Datasheet,	FT_000061	ed.
13.			Spansion.	(2013).	S25FL032P	32-Mbit	CMOS	3.0	Volt	Flash	Memory
with	104-MHz	SPI	(Serial	Peripheral	Interface)	Multi	I/O	Bus,
s25fl032p_00	rev.	9	ed.
14.			Digilent,	https://reference.digilentinc.com/arty:refmanual.
Accessed	January	2,	2017.
15.			TI.	(2015).	DP83848x	PHYTER	Mini	LS	Single	Port	10100	MB/s

http://reference.digilentinc.com/basys3:refmanual
http://reference.digilentinc.com/arty:refmanual

Ethernet	Transceiver,	snls250e	ed.
16.			Micron.	(2014).	Micron	Serial	NOR	Flash	Memory,	n25q128a	ed.
17.			Micron.	(2016).	Micron	DDR3L	SDRAM,	mt41k128m16	ed.
18.			Digilent,	http://www.xilinx.com/support/university/boards-
portfolio/xup-boards/Basys3Board.html.	Accessed	January	2,	2017.
19.			Digilent,
https://reference.digilentinc.com/_media/arty/arty_sw_btn_led.zip

Accessed	January	2,	2017.
20.			Xilinx.	(2016).	Vivado	Design	Suite	User	Guide:	Designing	with	IP,
ug896	(v2016.2)	ed.
21.			Xilinx.	(2016).	Vivado	Design	Suite:	Designing	with	IP	Tutorial,
ug939	(v2016.2)	ed.
22.			Xilinx.	(2016).	Vivado	Design	Suite	User	Guide:	Creating	and
Packaging	Custom	IP,	ug1118	(v2016.2)	ed.
23.			Xilinx.	(2016).	Vivado	Design	Suite:	Creating,	Packaging	Custom	IP
Tutorial,	ug1119	(v2016.2)	ed.
24.			Cummins,	C.	E.	(2000).	Nonblocking	assignments	in	Verilog
synthesis,	coding	styles	that	kill!,	in	SNUG	2000	San	Jose.
25.			Hamid,	M.	(2010).	Writing	Efficient	Testbenches,	Xilinx,	xapp199
(v1.1)	ed.
26.			Brown,	S.,	and	Vranesic,	Z.	(2009).	Fundamentals	of	Digital	Logic
with	VHDL	Design,	3rd	ed.	McGraw-Hill,	New	York.
27.			Pedroni,	V.	A.	(2014).	Circuit	Design	and	Simulation	with	VHDL,	2nd
ed.	The	MIT	Press,	Cambridge,	MA.
28.			Xilinx.	(2016).	Vivado	Design	Suite	User	Guide:	Synthesis,	ug901
(v2016.2)	ed.
29.			Mano,	M.	M.,	and	Ciletti,	M.	D.	(2006).	Digital	Design,	4th	ed.
Prentice	Hall,	Englewood	Cliffs,	NJ.
30.			Xilinx.	(2015).	Distributed	Memory	Generator	v8.0	LogiCORE	IP
Product	Guide,	pg063	ed.
31.			Xilinx.	(2016).	Block	Memory	Generator	v8.3	LogiCORE	IP	Product
Guide,	pg058	ed.
32.			Ünsalan,	C.,	and	Gürhan,	H.	D.	(2014).	Programmable
Microcontrollers	with	Applications:	MSP430	LaunchPad	with	CCS	and
Grace,	1st	ed.	McGraw-Hill,	New	York.
33.			Brown,	S.,	and	Vranesic,	Z.	(2014).	Fundamentals	of	Digital	Logic
with	Verilog	Design,	3rd	ed.	McGraw-Hill,	New	York.

http://www.xilinx.com/support/university/boards-portfolio/xup-boards/Basys3Board.html
http://reference.digilentinc.com/_media/arty/arty_sw_btn_led.zip

34.			Xilinx,
https://www.xilinx.com/ipcenter/processor_central/picoblaze/member/

Accessed	January	2,	2017.
35.			Xilinx.	(2011).	PicoBlaze	8-bit	Embedded	Microcontroller	User
Guide,	ug129	ed.
36.			Chapman,	K.	(2014).	PicoBlaze	for	Spartan-6,	Virtex-6,	7-Series,
Zynq	and	UltraScale	Devices	(KCPSM6).	Xilinx.
37.			Tracton,	P.,	https://github.com/ptracton/Picoblaze.	Accessed
January	2,	2017.
38.			Tracton,	P.,
https://github.com/ptracton/Picoblaze/tree/master/PicoBlaze_GPIO_Example

Accessed	January	2,	2017.
39.			Xilinx.	(2016).	Vivado	Design	Suite	Tutorial	Embedded	Processor
Hardware	Design,	ug940	ed.
40.			Xilinx.	(2016).	MicroBlaze	Processor	Reference	Guide,	ug984	ed.
41.			Xilinx,	https://www.xilinx.com/products/design-
tools/microblaze.html.	Accessed	January	2,	2017.
42.			Duckworth,	R.	J.,	http://users.wpi.edu/∼rjduck/Microblaze.
Accessed	January	2,	2017.
43.			Digilent,
https://reference.digilentinc.com/learn/programmablelogic/tutorials/arty-

getting-started-with-microblaze/start.	Accessed	January	2,	2017.
44.			FPGArduino,	http://www.nxlab.fer.hr/fpgarduino/.	Accessed
January	2,	2017.
45.			Imagination,
https://community.imgtec.com/university/resources/.	Accessed
January	2,	2017.
46.			ARM,	https://www.arm.com/products/designstart/index.php.
Accessed	January	2,	2017.
47.			Motorola	Inc.	(2003).	SPI	Block	Guide,	s12spiv3/d	ed.
48.			Digilent,
https://reference.digilentinc.com/reference/pmod/pmodals/start.
Accessed	January	2,	2017.
49.			NXP.	(2012).	UM10204	I2C-Bus	Specification	and	User	Manual,	rev.
5th	ed.
50.			Larson,	S.,	https://eewiki.net/pages/viewpage.action?
pageId=10125324.	Accessed	January	2,	2017.

http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/
http://github.com/ptracton/Picoblaze
http://github.com/ptracton/Picoblaze/tree/master/PicoBlaze_GPIO_Example
http://www.xilinx.com/products/design-tools/microblaze.html
http://users.wpi.edu/∼rjduck/Microblaze
http://reference.digilentinc.com/learn/programmablelogic/tutorials/arty-getting-started-with-microblaze/start
http://www.nxlab.fer.hr/fpgarduino/
http://reference.digilentinc.com/basys3:refmanual
http://www.arm.com/products/designstart/index.php
http://reference.digilentinc.com/reference/pmod/pmodals/start
http://eewiki.net/pages/viewpage.action?pageId=10125324

51.			Digilent,	http://store.digilentinc.com/pmod-cmps-3-axis-
digitalcompass/.	Accessed	January	2,	2017.
52.			Digilent,	https://learn.digilentinc.com/Documents/269.
Accessed	January	2,	2017.
53.			Digilent,	https://reference.digilentinc.com/basys3/refmanual.
Accessed	January	2,	2017.
54.			Digilent,
https://reference.digilentinc.com/learn/programmablelogic/tutorials/arty-

getting-started-with-microblaze-servers/start.	Accessed	January	2,
2017.
55.			Xilinx.	(2016).	Integrated	Logic	Analyzer	v6.2	LogiCORE	IP	Product
Guide,	pg172	ed.
56.			Xilinx.	(2016).	Vivado	Design	Suite	User	Guide:	Programming	and
Debugging,	ug908	ed.
57.			Xilinx.	(2016).	XADC	Wizard	v3.3	LogiCORE	IP	Product	Guide,
pg091	ed.
58.			MIT,	http://appinventor.mit.edu/explore/.	Accessed	January	2,
2017.
59.			Digilent,
https://reference.digilentinc.com/reference/pmod/pmodstep/start.
Accessed	January	2,	2017.
60.			Sparkfun,	https://www.sparkfun.com/products/13316.	Accessed
January	2,	2017.
61.			Mikroelektronika,	https://shop.mikroe.com/click/wireless-
connectivity/gsm.	Accessed	January	2,	2017.
62.			Zhao,	N.	(2010).	Full-featured	pedometer	design	realized	with	3-axis
digital	accelerometer.	Analog	Dialogue,	44	(06):	1–5.
63.			Xilinx.	(2016).	Vivado	Design	Suite	Tutorial	High-Level	Synthesis,
ug871	ed.
64.			Xilinx.	(2016).	Vivado	Design	Suite	User	Guide	High-Level
Synthesis,	ug902	ed.
65.			Xilinx.	(2013).	Introduction	to	FPGA	Design	with	Vivado	High-Level
Synthesis,	ug998	ed.

http://store.digilentinc.com/pmod-cmps-3-axis-digitalcompass/
http://learn.digilentinc.com/Documents/269
http://reference.digilentinc.com/basys3/refmanual
http://reference.digilentinc.com/basys3:refmanual
http://appinventor.mit.edu/explore/
http://reference.digilentinc.com/reference/pmod/pmodstep/start
http://www.sparkfun.com/products/13316
http://shop.mikroe.com/click/wireless-connectivity/gsm

Index

Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.
Locations	are	approximate	in	e-readers,	and	you	may	need	to	page	down	one	or
more	times	after	clicking	a	link	to	get	to	the	indexed	material.

Note:	Page	numbers	followed	by	f	denote	figures;	by	t,	tables.

/,	91,	102
–,	91,	99,	102,	160
&,	49
ˆ,	49
=,	52
+,	91
*,	91,	102
%,	91
+,	102
{	},	92
<=,	52
∼,	49
|,	49

0,	88,	99
1,	88,	99
2	×	4	bit	memory,	196f
4	×	8	bit	ROM	module,	198

	A	
Absolute	value	(abs),	102
Absorption	property,	127,	127t
Accelerometer	sensor,	360
ADC.	See	Analog-to-digital	converter	(ADC)

Add	sources	window,	27f
Adders,	147–150
Adding	two	floating-point	numbers,	328–332
Addition,	84–85
Advanced	applications,	325–360.	See	also
Applications
after,	64
Air	freshener	dispenser,	356
Alkaline	batteries,	328
ALU.	See	Arithmetic	logic	unit	(ALU)
always,	50,	52
Analog-to-digital	converter	(ADC),	13
and,	49,	62
AND	gate,	8,	8f,	121–122
Application-specific	integrated	circuit	(ASIC),	15
Applications,	325–360

adding	two	floating-point	numbers,	328–332
air	freshener	dispenser,	356
blink	LED	on	Basys3	board	every	second,	325–326
body	weight	scale,	358
calculator.	See	Calculator
car	park	sensor	system,	358
car	park	slot	counting	system.	See	Car	park	occupied	slot	counting	system
customer	counter,	360
digital	clock,	344–349
digital	safe.	See	Digital	safe	system
digital	table	tennis	game,	359–360
elevator	cabin	control	system,	359
frequency	meter,	360
home	alarm.	See	Home	alarm	system
ILA	usage,	325–326
intelligent	billboard,	358
intelligent	washing	machine,	356–357
inter-integrated	circuit	(I2	C),	295,	300–307
MicroBlaze,	253–257
moving	wave	via	LEDs,	349–350

non-touch	paper	towel	dispenser,	357
obstacle-avoiding	tank,	356
paper	towel	dispenser,	357
pedometer,	360
PicoBlaze,	251
reading	analog	values	from	internal	temperature	sensor,	327–328
reading	voltage	level	on	alkaline	battery,	328,	329
serial	peripheral	interface	(SPI),	280,	285–286,	287–288
soft-core	microcontroller,	257
switches	to	LEDs,	42–44
table	tennis	game,	359–360
traffic	lights,	357–358
translator,	351–356
universal	asynchronous	receiver/transmitter	(UART),	264–270
universal	serial	bus	(USB),	315–321
vending	machine,	344,	345–346
video	graphics	array	(VGA),	310,	312–314
washing	machine,	356–357
XADC	block	usage,	326–328

Architecture	definition,	62
Arduino/chipKit	compatible	SPI	header,	24
Arduino/chipKit	shield	connectors,	23
Arduino	shields,	2
Arithmetic	logic	unit	(ALU),	248,	250
Arithmetic	operations:

addition,	84–85
binary	numbers,	84–88
division,	87–88
implementation	(FPGA	building	blocks),	112,	112f,	113
multiplication,	86–87
multiplication	and	division	(shift	register),	217–219
subtraction,	85–86
Verilog,	91–97
VHDL,	102–109

Arrays,	100–102
Artix-7	XC7A35T	FPGA,	9
Arty	board:

advanced	connectors,	23–24
Arduino/chipKit	compatible	SPI	header,	24
Arduino/chipKit	shield	connectors,	23
board	layout,	21f,	22t
chipKit	processor	reset	button	and	jumper,	23
configuring	the	FPGA,	23
ethernet	connector,	23
external	memory,	24
input/output	connections,	22–23
LEDs,	23
oscillator/clock,	24
Pmod	connectors,	22
powering	the	board,	21–22
shared	UART/JTAG	USB	port,	23
slide	switches,	23
tricolor	LEDs,	23
use,	21

Arty	board	constraint	file,	39–40
ASCII	code,	83–84
ASCII	lowercase/uppercase	converter,	176
ASIC.	See	Application-specific	integrated	circuit	(ASIC)
Assembly	language	programming,	248
assign,	49,	51
Associate	ELF	file,	256,	257f
Associative	property,	127,	127t
Asynchronous	counter,	220,	221f
Asynchronous	frequency	divider,	243
Asynchronous	sequential	circuit,	213
Automobile	safety	belt	alarm	system,	146
Avnet,	21

	B	
Back	porch,	308
Barrel	shifter,	243
Basys3	board:

advanced	connectors,	20

board	layout,	18f,	18t
configuring	the	FPGA,	20
external	memory,	20
four-digit	sevensegment	display,	19
input/output	connections,	19
LEDs,	19
oscillator/clock,	20–21
Pmod	connectors,	19,	19f
powering	the	board,	17–18
push	buttons,	19
shared	UART/JTAG	USB	port,	20
slide	switches,	19
USB	host	connector,	20
use,	17
VGA	connector,	20

Basys3	board	restraint	file,	37–38
begin,	50,	157
Behavioral	modeling:

Verilog,	50–52
VHDL,	63–64

Behavioral	simulation,	34
Bibliography	(references),	369–371
Billboard,	intelligent,	358
Binary	arithmetic	operations,	84–88.	See	also	Arithmetic	operations
Binary	digit	(bit),	6
Binary	numbers,	77–79
Binary	representation,	5
Binary	to	BCD	converter	module,	232–233
Binary	to	decimal	conversion,	79
Binary	to	hexadecimal	conversion,	79–80
Binary	to	octal	conversion,	79
Binary	variable,	117
Bit,	77
Bit	complement,	80
Bit	representation,	80
Blink	LED	on	Basys3	board	every	second,	325–326
Blink	the	LED,	244–245

Block	keywords,	157
Block	RAM,	12–13
Block	random	access	memory	(RAM),	200,	201
Block	read-only	memory	(ROM),	199
Blocking	assignment,	52,	53
Body	weight	scale,	358
Boolean	algebra,	124–127,	125,	127,	127t
Boolean	algebra	identities,	125t
Boolean	algebra	properties,	125,	127,	127t
Buffer,	6,	6f
Building	blocks,	2–3
Byte,	78

	C	
Calculator:

combinational	circuit	blocks,	171
data	storage	elements,	200,	202
final	form,	332–336
keyboard	keypad	controller	module,	335–336
primitive,	109,	111

Car	door	alarm	system,	176
Car	park	occupied	slot	counting	system,	140–142

Basys3	board,	143,	174
combinational	circuit	blocks,	172
end-of-chapter	exercise,	176
final	form,	339–344
sequential	circuits,	236–237
synthesization,	142f
truth	table,	141t
Verilog,	141,	143,	170,	237,	342–344
VHDL,	141

Car	park	sensor	system,	358
Car	safety	belt	alarm	system,	146
Carry	bit,	84
Carry-in	bit,	148
Carry-out	bit,	147,	148

case,	157,	159,	161,	171
Case	sensitive,	89
casex,	161,	162
Central	processing	unit	(CPU),	248,	249
chipKit	processor	reset	button	and	jumper,	23
CLB.	See	Configurable	logic	block	(CLB)
Clock,	13
Clock	management	tile	(CMT),	13
Clock	regions,	13
CMT.	See	Clock	management	tile	(CMT)
Combinational	circuit,	117–146.	See	also	Combinational	circuit	blocks

binary	variable,	117
Boolean	algebra,	124–127
car	park	occupied	slot	counting	system,	140–142,	143
circuit	diagram,	124f
design,	136–137
digital	safe	system,	139–140,	142–143
FPGA	building	blocks,	143
AND	gate,	121–122
gate-level	minimization,	127–129
home	alarm	system,	137–138,	142
implementation.	See	Combinational	circuit	implementation
input/output	characteristics,	124	logic	function,	117–118
logic	gates,	118–123
NAND	gate,	121,	122f
NOR	gate,	120,	120f
NOT	gate,	118–119
one-input,	130–131
OR	gate,	119–121
three-input,	133–135
three-step	design	process,	136–137
truth	table,	118,	118t
two-input,	131–133
XOR	gate,	122–123

Combinational	circuit	analysis,	124–129
Combinational	circuit	blocks,	147–177.	See	also	Combinational	circuit

adders,	147–150

calculator,	171
car	park	occupied	slot	counting	system,	172–174
comparators,	150–156
decoders,	156–160
encoders,	160–163
FPGA	building	blocks,	174
home	alarm	system,	171–172,	173
multiplexers,	163–167
parity	generators	and	checkers,	167–171

Combinational	circuit	design,	136–137
Combinational	circuit	implementation,	129–136

one-input	combinational	circuit,	130–131
other	implementations,	136
POS	form,	130
SOP	form,	129
three-input	combinational	circuit,	133–135
truth	table-based	implementation,	129–130
two-input	combinational	circuit,	131–133

Commutative	property,	125,	127,	127t
Comparators,	150–156
Compass	module,	295
Component	declaration,	62,	64
Concatenation	operator:

Verilog,	98,	98f,	99f
VHDL,	105,	109,	110

Conditional	statements:
Verilog,	152–153
VHDL,	155–156

Configurable	logic	block	(CLB):
flip-flop,	11
look-up	table	(LUT),	11–12
multiplexer,	10–11
slices,	12

Constants:
Verilog,	89
VHDL,	100

Converting	analog	temperature	value	to	digital	form,	327

Converting	external	voltage	value	to	digital	form,	329
Counter,	219–226

asynchronous,	220,	221f
frequency	division,	225–226
state	diagram,	219,	219f
synchronous,	220,	220t,	221f
Verilog,	220–222
VHDL,	222–225

CPU.	See	Central	processing	unit	(CPU)
Create	a	new	project	window,	26f
Create	and	Package	New	IP	window,	41f
Customer	counter,	360

	D	
D	flip-flop,	188

characteristic	table,	189t
sequential	circuits,	205
symbol,	188f
Verilog,	190,	191f
VHDL,	193–194

D	latch:
characteristic	table,	181t
circuit	diagram,	181f
Verilog,	184–185
VHDL,	187

Data	storage,	179
Data	storage	elements,	179–204

calculator,	200,	202
cautionary	note,	204
debouncing,	201,	203
flip-flop.	See	Flip-flop
FPGA	building	blocks,	201–204
latch.	See	Latch
memory,	196,	196f
random	access	memory	(RAM),	199–200,	201
read-only	memory	(ROM),	196–199

register,	195,	195f
Data	types	and	operators,	77–116

arithmetic	operations	on	binary	numbers,	84–88
ASCII	code,	83–84
binary	numbers,	77–79
data	types	(Verilog),	88–89
data	types	(VHDL),	99–102
example	(calculator	implemented	on	Basys3	board	in	Verilog),	109,	111
fixed-point	representation,	81–82
floating-point	representation,	82–83
hexadecimal	numbers,	79–80
implementation	details	of	arithmetic	operations,	112,	112f,	113
implementation	details	of	vector	operations,	110,	111,	111f,	113
negative	numbers,	80–81
number	representations,	77–80
octal	numbers,	79
operators	(Verilog),	89–99
operators	(VHDL),	102–110

Dataflow	modeling:
Verilog,	49–50
VHDL,	62,	63

DDR3	SDRAM,	24
Debouncing,	201,	203
Decimal	number	system,	77
Decimal	to	binary	conversion,	78
Decoders,	156–160
Delay	types,	54
DeMorgan’s	theorem,	127,	127t
Design:

combinational	circuit,	136–137
FPGA,	14–16
sequential	circuit,	226–227

Design	philosophy,	14–16
Differential	mode,	9
Digilent	Inc.,	17,	21,	23,	257
Digital	clock,	240–243,	246,	344–349
Digital	compass,	295

Digital	electronics:
bit	values	as	voltage	levels,	5–6
buffer,	6,	6f
AND	gate,	8,	8f
logic	gates,	6–8
NOT	gate,	7,	7f
OR	gate,	7–8,	7f,	8f
transistor,	6,	6f

Digital	interfacing,	259–323
ethernet,	321
FPGA	building	blocks,	321
I2	C.	See	Inter-integrated	circuit	(I2	C)
SPI.	See	Serial	peripheral	interface	(SPI)
UART.	See	Universal	asynchronous
receiver/transmitter	(UART)
universal	serial	bus	(USB),	315–321
VGA.	See	Video	graphics	array	(VGA)

Digital	logic	gates,	6–8
Digital	safe	system,	139

Basys3	board,	142,	143
circuit	diagram,	139f
final	form,	337–339
sequential	circuits,	234–236
synthesization,	140f
Verilog,	139,	143,	235,	236,	338–339
VHDL,	140

Digital	signal	processing	(DSP)	slices,	13
Digital	system	implementation,	117
Digital	table	tennis	game,	359–360
Discrete	elements,	15
Displaying	numbers,	176–177
Distributed	random	access	memory	(RAM),	200
Distributed	read-only	memory	(ROM),	199
Distributive	property,	127,	127t
Division,	87–88
Division	(shift	register),	217–219

DNA	sequence	detector,	245
“Don’t	care”	condition,	88,	99,	160
DSP	slices.	See	Digital	signal	processing	(DSP)	slices
DSP48E1,	13
Duckworth,	R.	J.,	254
Duplication	number,	92

	E	
EasyVR	shield,	351,	353
Echo	server,	321
Edge	detector,	204,	244
Edge	detector	module,	360
Eight-input	LUT,	12
Eight-to-one	multiplexer,	134

Verilog,	165,	166f
VHDL,	167

Eight-to-three	priority	encoder,	162,	162f
Elevator	cabin	control	system,	359
ELF	file,	256,	257f
else,	153,	155
else	if,	152,	153
elsif,	155
Encoders,	160–163
end,	50,	157
endmodule,	48
Entity	declaration,	61
Ethernet,	321
Even/odd	number	detector,	146,	176
Even-parity	generator,	167,	168f,	168t
Exclusive-OR	(XOR)	gate,	122–123
External	memory:

Arty	board,	24
Basys3	board,	20

	F	
Fall	delay,	54

falling_edge,	194
Field-programmable	gate	array	(FPGA):

advantages/disadvantages,	15–16
arithmetic	operations,	112,	112f,	113
block	RAM,	12–13
boards.	See	Arty	board;	Basys3	board
clock	management,	13
combinational	circuit	blocks,	174
combinational	circuits,	143
configurable	logic	block	(CLB),	10–12
data	storage	elements,	201–204
design	philosophy,	14–16	digital	interfacing,	321
digital	signal	processing	(DSP)	slices,	13
high-speed	serial	I/O	transceiver	(HSSIO),	14
input/output	blocks,	9–10
interconnect	resources,	12
layout,	9
microcontroller.	See	Soft-core	microcontroller
peripheral	component	interconnect	express	(PCIe),	14
points	to	remember,	14–15
programming	the	FPGA,	37–40
reconfigurability,	15
sequential	circuit,	242
usage	areas,	16
vector	operations,	110,	111,	111f,	113
XADC	block,	13–14

Finite	state	machine,	205.	See	also	Sequential	circuit
Fire	alarm	system,	144–145,	176
Fixed-point	addition,	84
Fixed-point	division,	87
Fixed-point	multiplication,	87
Fixed-point	representation,	81–82
Fixed-point	signed	number	representation	formats,	82t
Fixed-point	subtraction,	85–86
Fixed-point	unsigned	number	representation	formats,	81t
Flip-flop,	11,	188–195

D,	188,	188f,	189t

JK,	189,	189f,	189t
T,	189,	190t
Verilog,	190–193
VHDL,	193–195

Floating-point	adder	module,	328,	329–331
Floating-point	addition,	84–85
Floating-point	division,	88
Floating-point	multiplication,	87
Floating-point	representation,	82–83
Floating-point	subtraction,	86
Follower,	271
Four-bit	comparator,	153,	153f,	155
Four-bit	register,	195f
Four-bit	serial	in/parallel	out	shift	register,	216,	217
Four-bit	serial	in/serial	out	shift	register,	215f
Four-to-one	multiplexer:

circuit	diagram,	164f
three-input	combination	circuit,	134,	135f
truth	table,	164t
two-input	combinational	circuit,	131,	132f
Verilog,	165
VHDL,	166

Four-to-two	priority	encoder,	160t,	161,	161f
FPGA.	See	Field-programmable	gate	array	(FPGA)
FPGA	boards,	2,	17.	See	also	Arty	board;	Basys3	board
FPGA	building	blocks,	9–14.	See	also	Field-programmable	gate	array	(FPGA)
FPGA	selection	window,	27f
Frequency	division,	225–226,	244
Frequency	meter,	360
Front	porch,	308
Full	adder,	148,	148f,	148t
function,	65
Functional	modeling,	49

	G	
Gate-level	minimization,	127–129

Gate-level	modeling,	48
General	purpose	input	and	output	(GPIO),	249,	250
generic,	219
Generic	look-up	table	(LUT),	130
Generic	truth	table,	118t
Gigabyte	(GB),	78
GitHub,	251
GPIO.	See	General	purpose	input	and	output
(GPIO)
Ground	voltage,	6
GSM	Click	module,	358

	H	
Half	adder,	147,	148f
Hardware	description	language	(HDL),	1,	47.	See	also	Verilog;	VHDL
Hardware	Manager,	39,	39f
HDL.	See	Hardware	description	language	(HDL)
Hexadecimal	numbers,	79–80
Hexadecimal	to	binary	conversion,	80
High	impedance,	88,	99
High-speed	serial	I/O	transceiver	(HSSIO),	14
HL	WebPACK	edition,	25
Home	alarm	system,	137

Basys3	board,	142,	173
binary	to	BCD	converter	module,	232–233
circuit	diagram,	137f
combinational	circuit	blocks,	171–172,	173
final	form,	335–337
sequential	circuits,	227–234
sevensegment	display	driver	module,	229–232
synthesization,	138f
Verilog,	138,	142,	173,	228,	234,	337
VHDL,	138

Honeywell	HMC5883L	3-axis	digital	compass,	295
HSSIO.	See	High-speed	serial	I/O	transceiver	(HSSIO)

	I	
I2	C.	See	Inter-integrated	circuit	(I2	C)
ieee	library,	99
IEEE	754	Standard	for	floating-point	representation,	83t
if,	152,	153,	155
ILA	usage.	See	Integrated	logic	analyzer	(ILA)	IP	core	usage
initial,	51,	52
inout,	48,	61
input,	48
Input/output	blocks,	9–10
Input/output	pins,	9–10
Input/output	port	declaration,	58
Instantiation:

MicroBlaze	MCS,	253,	254
Verilog,	58
Verilog	testbench	formation,	68
VHDL,	65

integer,	88
Integrated	logic	analyzer	(ILA)	IP	core	usage,	325–326
Intellectual	property	(IP)

adding	existing	IP,	70–75
IP	management,	40–42
random	access	memory	(RAM),	199–200,	201
read-only	memory	(ROM),	197–199
Vivado	HLS,	361–366

Intelligent	billboard,	358
Intelligent	washing	machine,	356–357
Inter-integrated	circuit	(I2	C):

application,	295,	300–307
connection	diagram,	286,	288,	289f
data	format,	286
serial	data	line	(SDA)/serial	clock	line	(SCL),	286
timing	diagram,	289f
transmission	and	reception	operations,	288–289
Verilog,	289–295,	301–303
VHDL,	295,	296–299,	304–307

Interconnect	resources,	12
Internet	of	things,	322
Internet	protocol	(IP)	address,	321
Involution	property,	125,	127t
IP.	See	Intellectual	property	(IP)
IP	address.	See	Internet	protocol	(IP)	address
IP	catalog	window,	41f,	43f
IP	management,	40–42

	J	
JK	flip-flop,	189

characteristic	table,	189t
circuit	diagram,	189f
Verilog,	191,	192f
VHDL,	194

Joystick	application,	146,	176

	K	
KCPSM6,	249
Keyboard	keypad	controller	module,	335–336
Keypad	decoder,	145–146,	176
Kilobyte	(kB),	78

	L	
Latch,	179–187

D,	181,	181f,	181t
defined,	179
SR,	179–181
Verilog,	181–185
VHDL,	185–187

LCD	driver	module,	351–352
LDR.	See	Light-dependent	resistor	(LDR)
Leader,	271
Least	significant	bit	(LSB),	78
library,	61,	65
Light-dependent	resistor	(LDR),	357

Logic	analyzer,	325–326
Logic	function,	117–118
Logic	gates,	6–8,	118–123
Logic	level	one,	88,	99
Logic	level	zero,	88,	99
Look-up	table	(LUT),	11–12,	130,	136
LSB.	See	Least	significant	bit	(LSB)
LUT.	See	Look-up	table	(LUT)

	M	
Master,	271
“Master	Xilinx	Design	Constraint	(XDC)”	file,	38
Mealy	model,	205,	207,	207f
Megabyte	(MB),	78
Memory,	196,	196f.	See	also	Random	access	memory	(RAM);	Read-only
memory	(ROM)

MicroBlaze,	251–257
application	(Basys3	board),	253–257
ELF	file,	257,	258
instantiation	template,	253,	254
IP	block,	252–253

MicroBlaze	MCS	Tutorial,	v2,	254
Microcontroller,	15–16.	See	also	Soft-core	microcontroller
Microelektronika,	358
Micron,	24
Modulus	(%),	91
Modulus	(mod),	102
Moore	model,	205,	207,	207f
Most	significant	bit	(MSB),	78
Moving	wave	application,	349–350
MSB.	See	Most	significant	bit	(MSB)
Multiplexer,	10–11,	163–167
Multiplication,	86–87
Multiplication	and	division	(shift	register),	217–219

	N	

N-bit	comparator,	151,	154
N-bit	serial	in/serial	out	shift	register,	215
N-bit	synchronous	up/down	counter,	222,	224
N	input	LUT,	12f
Naming:

data	types	(Verilog),	88–89
data	types	(VHDL),	100

NAND	gate,	121,	122f
nededge,	204
Negative	numbers,	80–81
negedge	clr,	190
Net	data	type,	88
New	project,	25–30
Non-touch	paper	towel	dispenser,	357
Nonblocking	assignment,	52,	53
NOR	gate,	120,	120f
not,	49,	62
NOT	gate,	7,	7f,	118–119
Number	representations,	77–80

binary	numbers,	77–79
hexadecimal	numbers,	79–80
octal	numbers,	79

	O	
Obstacle-avoiding	tank,	356
Octal	numbers,	79
Octal	to	binary	conversion,	79
Odd	parity,	168
One-bit	addition,	147–150
One-bit	comparator,	150–152,	154
One-input	combinational	circuit,	130–131
One’s	complement	representation,	80
Operators:

Verilog,	89–99
VHDL,	102–110

or,	49,	62

OR	gate,	7–8,	7f,	8f,	119–121
Oscillator/clock:

Arty	board,	24
Basys3	board,	20–21
PicoBlaze,	250
soft-core	microcontroller,	248–249

out,	61
output,	48
Overflow,	84,	85

	P	
package,	65
Paper	towel	dispenser,	357
Parallel	in/parallel	out	shift	register,	215
Parallel	in/serial	out	shift	register,	215
Parameters,	89
Parity	checker,	168–171
Parity	generation,	167
Parity	generator,	167–170
PCIe.	See	Peripheral	component	interconnect	express	(PCIe)
Pedometer,	360
Peripheral	component	interconnect	express	(PCIe),	14
Peripheral	module	connectors.	See	Pmod	connectors
Peripherals,	249
Physical	layer	(PHY),	23
PIC24FJ128	chip,	315
PicoBlaze:

ALU,	250
application,	251
assembly	language,	249
CPU,	249
functional	block	diagram,	250f
GPIO,	250
KCPSM6,	249
oscillator/clock	module,	250
Scratchpad	RAM,	250

Verilog,	250,	251
VHDL,	250–251,	252

Pixel	clock,	308
Pixels,	308
Pmod	connectors:

Arty	board,	22
Basys3	board,	19,	19f

PMOD	three-axis	digital	compass	module,	295
PmodALS,	280
port,	61
Port	list	correspondence,	65
POS.	See	Product	of	sums	(POS)
posedge,	204,	213
posedge	clk,	190
Preparatory	steps,	2
procedure,	65
process,	63
Product	of	sums	(POS),	130
Program	counter	(PC),	248
“programming	an	FPGA,”	14
Project	explorer	window	(Vivado	HLS),	363f
Proximity	sensor,	358,	359
Pulse	width	modulation	(PWM),	246,	349
PWM.	See	Pulse	width	modulation	(PWM)

	R	
radix,	89
RAM.	See	Random	access	memory	(RAM)
Random	access	memory	(RAM),	199–200,	201
Read-only	memory	(ROM),	196–199

block	ROM,	199
distributed	ROM,	199
IP	blocks,	197–199
Verilog,	196–197,	199
VHDL,	197,	198

Reading	analog	values	from	internal	temperature	sensor,	327–328

Reading	voltage	level	on	alkaline	battery,	328,	329
RealTerm,	264
Receive	(RX)	pin,	259
Reconfigurability,	15
Red,	green,	and	blue	(RGB)	values,	308
References,	369–371
Refresh	rate	of	display,	308
reg,	88
Register,	195,	195f
Relational	operators:

Verilog,	151,	152t
VHDL,	154,	154t

Remainder	(rem),	102
Remote	controller–key	pattern	generator,	146
Replication	operator,	98,	98f,	99f
RGB	values.	See	Red,	green,	and	blue	(RGB)	values
Rise	delay,	54
rising_edge,	194
ROM.	See	Read-only	memory	(ROM)
RS-232	port,	264
RX	pin.	See	Receive	(RX)	pin

	S	
Scale,	body	weight,	358
SCL.	See	Serial	clock	line	(SCL)
Scratchpad	RAM,	250
SDA.	See	Serial	data	line	(SDA)
Sequential	circuit,	205–246

asynchronous	operation,	213
car	park	occupied	slot	counting	system,	236–237
circuit	diagram,	206f
common	characteristic,	205
counter,	219–226
design,	226–227
digital	clock,	240–243
digital	safe	system,	234–236

FPGA	building	blocks,	242
home	alarm	system,	227–234
Mealy	model,	205,	207,	207f
Moore	model,	205,	207,	207f
shift	register,	213–219
state	and	output	equations,	205–206
state	diagram,	207–208
state	representation	(Verilog),	208–210
state	representation	(VHDL),	211–212
state	table,	206,	207t
synchronous	operation,	212–213
timing,	212–213
vending	machine,	237–240

Sequential	circuit	analysis,	205–212
Serial	clock	line	(SCL),	286
Serial	communication	protocols,	259
Serial	data	line	(SDA),	286
Serial	in/parallel	out	shift	register,	215–217
Serial	in/serial	out	shift	register,	215,	215f,	217
Serial	peripheral	interface	(SPI):

application,	280,	285–286,	287–288
connection	diagram,	273,	273f
data	format,	273
leader/follower	(master/slave),	271
modes,	273,	274,	274t
receiver	modules,	277–280,	283–285
synchronous	communication	protocol,	270
timing,	273,	274f
transmission	and	reception	operations,	273
transmitter	modules,	274–277,	280,	281–282
Verilog,	274–280
VHDL,	280,	281–285

Seven-input	LUT,	12
Sevensegment	display	decoder,	145
Sevensegment	display	decoder	module,	172,	173
Sevensegment	display	driver	module,	229–232
Shared	UART/JTAG	USB	port:

Arty	board,	23
Basys3	board,	20

Shift	register,	213–219
multiplication	and	division,	217–219
synthesization,	217f
types,	215
Verilog,	215
VHDL,	215,	216

Signal	data	type,	99,	100
signed,	99
Signed	bit	representation,	80
Simulating	a	project,	32–35
Simulation	timings,	52–53
Simulation	tools,	2
Single-ended	pins,	9,	10
Slave,	271
SLICEL,	12
SLICEM,	12
Slices,	12
Snake	game,	245–246
SoC.	See	System	on	chip	(SoC)
Soft-core	microcontroller:

ALU,	248
applications,	257
CPU,	248
FPGA	building	blocks,	257–258
GPIO,	249
memory,	248
MicroBlaze,	251–257
oscillator/clock,	248–249
peripherals,	249
PicoBlaze,	249–252

Solution	configuration	window	(Vivado	HLS),	363f
SOP.	See	Sum	of	products	(SOP)
Spanish	translation,	351–356
Spansion,	20
SPI.	See	Serial	peripheral	interface	(SPI)

SPI	communication	timing	diagram,	273,	274f
SR	latch,	179–181

Verilog,	181–184
VHDL,	186–187

State,	205
State	and	output	equations,	205–206
State	diagram,	207–208
State	table,	206,	207t
Status	register,	248
std_logic,	99
std_logic_vector,	99
Stepper	motor,	359
Stepper	motor	terminals,	340f
Strain	gauge,	358
Structural	modeling,	48–49
Subtraction,	85–86
Sum	bit,	147,	148
Sum	of	products	(SOP),	129
Supplement	file,	65,	68
Supply	voltage,	6
Switches	to	LEDs	application,	42–44
Synchronous	counter,	220,	220t,	221f
Synchronous	frequency	divider,	226,	227
Synchronous	sequential	circuit,	212–213
Synthesis	completion	window,	30f
Synthesization:

asynchronous	up	counter,	223f
car	park	occupied	slot	counting	system,	142f
D	latch,	185f
digital	safe	system,	140f
home	alarm	system,	138f
JK	flip-flop,	192f
sequence	detector	in	behavioral	model,	210f
serial	in/parallel	out	shift	register,	217f
shift	register,	217f
SR	latch	using	behavioral	model,	183f
SR	latch	using	dataflow	model,	183f

SR	latch	with	control	input,	184f
synchronous	up	counter,	222f
T	flip-flop	in	behavioral	model,	193f

Synthesizing	a	project,	30–32
System	on	chip	(SoC),	258

	T	
T	flip-flop,	189

characteristic	table,	190t
Verilog,	191,	192,	193f
VHDL,	194,	195

Table	tennis	game,	359–360
Testbench	formation:

Verilog,	56–60
VHDL,	65–70

Testbench	module	declaration,	57
Three-axis	accelerometer	sensor,	360
Three-bit	even-parity	checker,	170
Three-bit	even-parity	generator,	168,	168f,	168t,	169,	169f,	170
Three-input	combinational	circuit,	133–135
Three-to-eight	decoder,	156,	158,	158f,	159
timescale,	58
Timing	and	delays	in	modeling:

Verilog,	52–55
VHDL,	64

Tracton,	Phil,	251,	257
Traffic	lights,	357–358
Transistor,	6,	6f
Translator,	351–356
Transmit	(TX)	pin,	259
Truth	table,	118,	118t
Truth	table-based	implementation,	129–130
Turn-off	delay,	54
Two-bit	asynchronous	up	counter,	221f,	223f,	225
Two-bit	synchronous	up	counter,	220,	220t,	221f,	222f,	223
Two-bit	up	counter,	219f

Two-input	combinational	circuit,	131–133
Two-to-four	decoder,	156,	156f,	157,	159
Two-to-one	multiplexer,	11,	11f

one-input	combinational	circuit,	130,	131f
three-input	combination	circuit,	134,	136f
two-input	combinational	circuit,	132

Two’s	complement	calculator,	144
Two’s	complement	representation,	80–81
TX	pin.	See	Transmit	(TX)	pin

	U	
UART.	See	Universal	asynchronous	receiver/transmitter	(UART)
Undefined	logic	level,	88,	99
Unit	Under	Test	(UUT):

Verilog,	58,	59
VHDL,	68,	69

Universal	asynchronous	receiver/transmitter	(UART):
applications,	264–270
data	format,	259–260
data	framing	(eightbit	data),	260f
receiver	module,	261,	263–264,	266–267
receiving	data	to	Basys3	board	from	host	PC,	270–272
reception	operation,	260
RS-232	port,	264
timing,	260
transmission	operation,	260
transmit	(TX)	pin/receive	(RX)	pin,	259
transmitter	module,	261,	262,	264,	265
transmitting	data	from	Basys3	board	to	host	PC,	267–270
Verilog,	260–264,	268,	271
VHDL,	264–267,	269,	272

Universal	serial	bus	(USB):
keyboard	application,	315–321
Verilog,	315,	316,	318–319
VHDL,	315,	317,	320–321

unsigned,	99

Up-down	counter,	244
UQ8.0	format,	84
UQ8.4	format,	84
Usage	areas,	16
USB.	See	Universal	serial	bus	(USB)
USB	HID	host,	315
use,	61,	65
Utilization	report:

implementing	the	project,	37f
synthesizing	the	project,	31f

UUT.	See	Unit	Under	Test	(UUT)

	V	
Variable	data	type,	88,	99,	100
Vector,	89,	90,	90f,	91f
Vector	operations,	110,	111,	111f,	113
Vending	machine,	237–240,	344,	345–346
Verilog,	1

adder,	148–149
adding	existing	IP,	70–75
adding	two	floating-point	numbers,	329–331
AND	gate,	122
arithmetic	operators,	91–97
behavioral	modeling,	50–52
binary	to	BCD	converter	module,	232
Boolean	identity	operations,	125
calculator,	332–334
car	park	occupied	counting	system,	141,	143,	170,	237,	342–344
case	sensitive,	89
comparator,	151–153
concatenation	operator,	98,	98f,	99f
conditional	statements,	152–153
constants,	89
converting	analog	temperature	value	to	digital	form,	327
converting	external	voltage	value	to	digital	form,	329
counter,	220–222

D	flip-flop,	190,	191f
D	latch,	184–185
data	types,	88–89
dataflow	modeling,	49–50
decoder,	156–158
digital	clock,	241–242,	243,	346–348
digital	safe	system,	139,	143,	235,	236,	338–339
edge	detector,	245
encoder,	161–162
flip-flop,	190–193
frequency	divider,	226
gate-level	minimization,	128
hierarchical	module	representation,	55,	56,	57f
home	alarm	system,	138,	142,	173,	228,	234,	337
ILA	usage,	326
inter-integrated	circuit	(I2	C),	289–295,	301–303
JK	flip-flop,	191,	192f
keyboard	keypad	controller	module,	335–336
latches,	181–185
LCD	driver	module,	351–352
MicroBlaze	application,	254
MicroBlaze	instantiation	template,	253
module	representation,	47–52
moving	wave	application,	350
multiplexer,	164–165
multiplication	and	division	(shift	register),	217,	218
NOT	gate,	119
operators,	89–99
OR	gate,	120
parameters,	89
parity	generators	and	checkers,	168–170
PicoBlaze,	250,	251
PWM	module,	349
random	access	memory	(RAM),	200,	201
read-only	memory	(ROM),	196–197,	199
relational	operators,	151,	152t

replication	operator,	98,	98f,	99f
sequence	detector,	208–210
serial	peripheral	interface	(SPI),	274–280
sevensegment	display	driver	module,	229–230
SR	latch,	181–184
stepper	motor	driver	module,	341–342
structural	modeling,	48–49
synchronous	sequential	circuit,	213,	214
T	flip-flop,	191,	192,	193f
testbench	formation,	56–60
timing	and	delays	in	modeling,	52–55
translator,	353–355
UART,	260–264,	268,	271
universal	serial	bus	(USB),	315,	316,	318–319
vectors,	89,	90,	90f,	91f
vending	machine,	238–239,	240,	345–346
video	graphics	array	(VGA),	308–310,	313
Vivado	HLS,	366
XOR	gate,	123

Verilog	file,	28,	29
Verilog	testbench	file,	33–35,	56–60
VGA.	See	Video	graphics	array	(VGA)
VHDL,	1

adder,	149–150
adding	existing	IP,	75
AND	gate,	122
arithmetic	operations,	102–109
arrays,	100–102
asynchronous	sequential	circuit,	213,	214
behavioral	modeling,	63–64
binary	to	BCD	converter	module,	233
Boolean	identity	operations,	126
car	park	occupied	counting	system,	141
comparator,	154–156
concatenation	operator,	105,	109,	110
conditional	statements,	155–156
constants,	100

counter,	222–225
D	flip-flop,	193–194
D	latch,	187
data	types,	99–102
dataflow	modeling,	62,	63
decoder,	158–159
digital	safe	system,	140
encoder,	162–163
entity	and	architecture	representations,	61–62
flip-flop,	193–195
frequency	divider,	227
gate-level	minimization,	128
hierarchical	structural	representation,	64–68
home	alarm	system,	138
inter-integrated	circuit	(I2	C),	295,	296–299,	304–307
JK	flip-flop,	194
latches,	185–187
MicroBlaze	instantiation	template,	254
multiplexer,	166–167
multiplication	and	division	(shift	register),	218,	219
NOT	gate,	119
operators,	102–110
OR	gate,	121
parity	generators	and	checkers,	170–171
PicoBlaze,	250–251,	252
read-only	memory	(ROM),	197,	198
relational	operators,	154,	154t
sequence	detector,	211–212
serial	peripheral	interface	(SPI),	280,	281–285
sevensegment	display	driver	module,	231
SR	latch,	186–187
synchronous	sequential	circuit,	213
T	flip-flop,	194,	195
testbench	formation,	65–70
timing	and	delays	in	modeling,	64
UART,	264–267,	269,	272

universal	serial	bus	(USB),	315,	317,	320–321
video	graphics	array	(VGA),	310,	311–312,	313–314
Vivado	HLS,	366
XOR	gate,	123

VHDL	file,	29,	30
VHDL	testbench	file,	35,	36,	65–70
Video	graphics	array	(VGA):

application,	310,	312–314
front	porch/back	porch,	308
horizontal	lines/frame,	308
pixels/pixel	clock,	308
refresh	rate	of	display,	308
RGB	values,	308
Verilog,	308–310,	313
VHDL,	310,	311–312,	313–314
working	principles,	308

Vivado	design	suite,	25–45
Arty	board	constraint	file,	39–40
Basys3	board	restraint	file,	37–38
editions,	25
Hardware	Manager,	39,	39f
hardware	programming	window,	40f
HL	WebPACK	edition,	25
implementation,	35–37
IP	management,	40–42
new	project,	25–30
programming	the	FPGA,	37–40
RTL	schematic	view	of	design,	32f
schematic	view	of	design,	32f
simulating	the	project,	32–35
switches	to	LEDs	application,	42–44
synthesizing	the	project,	30–32
utilization	report,	31f,	37f
Verilog	file,	28,	29
Verilog	testbench	file,	33–35
version,	25
VHDL	file,	29,	30

VHDL	testbench	file,	35,	36
welcome	screen,	26f

Vivado	High-Level	Synthesis	(HLS),	361–367
create	new	project	(generating	an	IP),	361–364
project	explorer	window,	363f
references,	361,	371
solution	configuration	window,	363f
using	generated	IP	in	Vivado,	364–366
Verilog,	366
VHDL,	366
welcome	screen,	362f

Vivado	HLS	2016.3,	361
Vivado	HLS	welcome	screen,	362f
Vivado	project	main	window,	28f
Vivado	WebPACK,	25,	254,	361
Vivado	welcome	screen,	26f
Voltage	divider	circuit,	328
Voltage	level,	6

	W	
Washing	machine,	356–357
WebPACK,	25,	254,	361

	X	
x,	88
XADC	block,	13–14
XADC	block	usage,	326–328
XADC	Wizard,	327
XC7A35TCPG236-1,	9
XC7A35TICSG324-1L,	9
Xilinx	Artix-7	XC7A35T	FPGA,	9
Xilinx	MicroBlaze	microcontroller,	251–257.	See	also	MicroBlaze
Xilinx	PicoBlaze	microcontroller,	249–251.	See	also	PicoBlaze
Xilinx	SDK	new	project	window,	255f
Xilinx	SDK	project	explorer	window,	255f
Xilinx	software	development	kit	(SDK),	254

xor,	49,	62
XOR	gate,	122–123

	Z	
z,	88,	99
Zynq	family,	258

Table	of	Contents

Title	Page
Copyright	Page
Contents
Preface
Acknowledgments
1			Introduction

1.1	Hardware	Description	Languages
1.2	FPGA	Boards	and	Software	Tools
1.3	Topics	to	Be	Covered	in	the	Book

2			Field-Programmable	Gate	Arrays
2.1	A	Brief	Introduction	to	Digital	Electronics

2.1.1	Bit	Values	as	Voltage	Levels
2.1.2	Transistor	as	a	Switch
2.1.3	Logic	Gates	from	Switches

2.2	FPGA	Building	Blocks
2.2.1	 Layout	 of	 the	 Xilinx	 Artix-7	 XC7A35T
FPGA
2.2.2	Input/Output	Blocks
2.2.3	Configurable	Logic	Blocks
2.2.4	Interconnect	Resources
2.2.5	Block	RAM
2.2.6	DSP	Slices
2.2.7	Clock	Management
2.2.8	The	XADC	Block
2.2.9	High-Speed	Serial	I/O	Transceivers
2.2.10	Peripheral	Component	Interconnect	Express
Interface

2.3	FPGA-Based	Digital	System	Design	Philosophy
2.3.1	How	to	Think	While	Using	FPGAs
2.3.2	Advantages	and	Disadvantages	of	FPGAs

2.4	Usage	Areas	of	FPGAs
2.5	Summary
2.6	Exercises

3			Basys3	and	Arty	FPGA	Boards
3.1	The	Basys3	Board

3.1.1	Powering	the	Board
3.1.2	Input/Output
3.1.3	Configuring	the	FPGA
3.1.4	Advanced	Connectors
3.1.5	External	Memory
3.1.6	Oscillator/Clock

3.2	The	Arty	Board
3.2.1	Powering	the	Board
3.2.2	Input/Output
3.2.3	Configuring	the	FPGA
3.2.4	Advanced	Connectors
3.2.5	External	Memory
3.2.6	Oscillator/Clock

3.3	Summary
3.4	Exercises

4			The	Vivado	Design	Suite
4.1	Installation	and	the	Welcome	Screen
4.2	Creating	a	New	Project

4.2.1	Adding	a	Verilog	File
4.2.2	Adding	a	VHDL	File

4.3	Synthesizing	the	Project
4.4	Simulating	the	Project

4.4.1	Adding	a	Verilog	Testbench	File
4.4.2	Adding	a	VHDL	Testbench	File

4.5	Implementing	the	Synthesized	Project
4.6	Programming	the	FPGA

4.6.1	Adding	 the	Basys3	Board	Constraint	File	 to
the	Project
4.6.2	 Programming	 the	 FPGA	 on	 the	 Basys3
Board
4.6.3	Adding	the	Arty	Board	Constraint	File	to	the
Project
4.6.4	Programming	the	FPGA	on	the	Arty	Board

4.7	Vivado	Design	Suite	IP	Management
4.7.1	Existing	IP	Blocks	in	Vivado
4.7.2	Generating	a	Custom	IP

4.8	Application	on	the	Vivado	Design	Suite
4.9	Summary
4.10	Exercises

5			Introduction	to	Verilog	and	VHDL
5.1	Verilog	Fundamentals

5.1.1	Module	Representation
5.1.2	Timing	and	Delays	in	Modeling
5.1.3	Hierarchical	Module	Representation

5.2	Testbench	Formation	in	Verilog
5.2.1	Structure	of	a	Verilog	Testbench	File
5.2.2	Displaying	Test	Results

5.3	VHDL	Fundamentals
5.3.1	Entity	and	Architecture	Representations
5.3.2	Dataflow	Modeling
5.3.3	Behavioral	Modeling
5.3.4	Timing	and	Delays	in	Modeling
5.3.5	Hierarchical	Structural	Representation

5.4	Testbench	Formation	in	VHDL
5.4.1	Structure	of	a	VHDL	Testbench	File
5.4.2	Displaying	Test	Results

5.5	Adding	an	Existing	IP	to	the	Project
5.5.1	Adding	an	Existing	IP	in	Verilog
5.5.2	Adding	an	Existing	IP	in	VHDL

5.6	Summary
5.7	Exercises

6			Data	Types	and	Operators
6.1	Number	Representations

6.1.1	Binary	Numbers
6.1.2	Octal	Numbers
6.1.3	Hexadecimal	Numbers

6.2	Negative	Numbers
6.2.1	Signed	Bit	Representation
6.2.2	One’s	Complement	Representation
6.2.3	Two’s	Complement	Representation

6.3	Fixed-and	Floating-Point	Representations
6.3.1	Fixed-Point	Representation
6.3.2	Floating-Point	Representation

6.4	ASCII	Code
6.5	Arithmetic	Operations	on	Binary	Numbers

6.5.1	Addition
6.5.2	Subtraction
6.5.3	Multiplication

6.5.4	Division
6.6	Data	Types	in	Verilog

6.6.1	Net	and	Variable	Data	Types
6.6.2	Data	Values
6.6.3	Naming	a	Net	or	Variable
6.6.4	Defining	Constants	and	Parameters
6.6.5	Defining	Vectors

6.7	Operators	in	Verilog
6.7.1	Arithmetic	Operators
6.7.2	Concatenation	and	Replication	Operators

6.8	Data	Types	in	VHDL
6.8.1	Signal	and	Variable	Data	Types
6.8.2	Data	Values
6.8.3	Naming	a	Signal	or	Variable
6.8.4	Defining	Constants
6.8.5	Defining	Arrays

6.9	Operators	in	VHDL
6.9.1	Arithmetic	Operators
6.9.2	Concatenation	Operator

6.10	Application	on	Data	Types	and	Operators
6.11	FPGA	Building	Blocks	Used	in	Data	Types	and	Operators

6.11.1	 Implementation	 Details	 of	 Vector
Operations
6.11.2	 Implementation	 Details	 of	 Arithmetic
Operations

6.12	Summary
6.13	Exercises

7			Combinational	Circuits
7.1	Basic	Definitions

7.1.1	Binary	Variable
7.1.2	Logic	Function
7.1.3	Truth	Table

7.2	Logic	Gates
7.2.1	The	NOT	Gate
7.2.2	The	OR	Gate
7.2.3	The	AND	Gate
7.2.4	The	XOR	Gate

7.3	Combinational	Circuit	Analysis
7.3.1	Logic	Function	Formation	between	Input	and

Output
7.3.2	Boolean	Algebra
7.3.3	Gate-Level	Minimization

7.4	Combinational	Circuit	Implementation
7.4.1	Truth	Table-Based	Implementation
7.4.2	 Implementing	 One-Input	 Combinational
Circuits
7.4.3	 Implementing	 Two-Input	 Combinational
Circuits
7.4.4	 Implementing	 Three-Input	 Combinational
Circuits

7.5	Combinational	Circuit	Design
7.5.1	Analyzing	the	Problem	to	Be	Solved
7.5.2	Selecting	a	Solution	Method
7.5.3	Implementing	the	Solution

7.6	Sample	Designs
7.6.1	Home	Alarm	System
7.6.2	Digital	Safe	System
7.6.3	Car	Park	Occupied	Slot	Counting	System

7.7	Applications	on	Combinational	Circuits
7.7.1	Implementing	the	Home	Alarm	System
7.7.2	Implementing	the	Digital	Safe	System
7.7.3	 Implementing	 the	 Car	 Park	 Occupied	 Slot
Counting	System

7.8	FPGA	Building	Blocks	Used	in	Combinational	Circuits
7.9	Summary
7.10	Exercises

8			Combinational	Circuit	Blocks
8.1	Adders

8.1.1	Half	Adder
8.1.2	Full	Adder
8.1.3	Adders	in	Verilog
8.1.4	Adders	in	VHD

8.2	Comparators
8.2.1	Comparators	in	Verilog
8.2.2	Comparators	in	VHDL

8.3	Decoders
8.3.1	Decoders	in	Verilog
8.3.2	Decoders	in	VHDL

8.4	Encoders
8.4.1	Encoders	in	Verilog
8.4.2	Encoders	in	VHDL

8.5	Multiplexers
8.5.1	Multiplexers	in	Verilog
8.5.2	Multiplexers	in	VHDL

8.6	Parity	Generators	and	Checkers
8.6.1	Parity	Generators
8.6.2	Parity	Checkers
8.6.3	Parity	Generators	and	Checkers	in	Verilog
8.6.4	Parity	Generators	and	Checkers	in	VHDL

8.7	Applications	on	Combinational	Circuit	Blocks
8.7.1	Improving	the	Calculator
8.7.2	Improving	the	Home	Alarm	System
8.7.3	 Improving	 the	 Car	 Park	 Occupied	 Slot
Counting	System

8.8	FPGA	Building	Blocks	Used	in	Combinational	Circuit	Blocks
8.9	Summary
8.10	Exercises

9			Data	Storage	Elements
9.1	Latches

9.1.1	SR	Latch
9.1.2	D	Latch
9.1.3	Latches	in	Verilog
9.1.4	Latches	in	VHDL

9.2	Flip-Flops
9.2.1	D	Flip-Flop
9.2.2	JK	Flip-Flop
9.2.3	T	Flip-Flop
9.2.4	Flip-Flops	in	Verilog
9.2.5	Flip-Flops	in	VHDL

9.3	Register
9.4	Memory
9.5	Read-Only	Memory

9.5.1	ROM	in	Verilog
9.5.2	ROM	in	VHDL
9.5.3	ROM	Formation	Using	IP	Blocks

9.6	Random	Access	Memory
9.7	Application	on	Data	Storage	Elements

9.8	FPGA	Building	Blocks	Used	in	Data	Storage	Elements
9.9	Summary
9.10	Exercises

10			Sequential	Circuits
10.1	Sequential	Circuit	Analysis

10.1.1	Definition	of	State
10.1.2	State	and	Output	Equations
10.1.3	State	Table
10.1.4	State	Diagram
10.1.5	State	Representation	in	Verilog
10.1.6	State	Representation	in	VHDL

10.2	Timing	in	Sequential	Circuits
10.2.1	Synchronous	Operation
10.2.2	Asynchronous	Operation

10.3	Shift	Register	as	a	Sequential	Circuit
10.3.1	Shift	Registers	in	Verilog
10.3.2	Shift	Registers	in	VHDL
10.3.3	 Multiplication	 and	 Division	 Using	 Shift
Registers

10.4	Counter	as	a	Sequential	Circuit
10.4.1	Synchronous	Counter
10.4.2	Asynchronous	Counter
10.4.3	Counters	in	Verilog
10.4.4	Counters	in	VHDL
10.4.5	Frequency	Division	Using	Counters

10.5	Sequential	Circuit	Design
10.6	Applications	on	Sequential	Circuits

10.6.1	Improving	the	Home	Alarm	System
10.6.2	Improving	the	Digital	Safe	System
10.6.3	 Improving	 the	 Car	 Park	 Occupied	 Slot
Counting	System
10.6.4	Vending	Machine
10.6.5	Digital	Clock

10.7	FPGA	Building	Blocks	Used	in	Sequential	Circuits
10.8	Summary
10.9	Exercises

11			Embedding	a	Soft-Core	Microcontroller
11.1	Building	Blocks	of	a	Generic	Microcontroller

11.1.1	Central	Processing	Unit

11.1.2	Arithmetic	Logic	Unit
11.1.3	Memory
11.1.4	Oscillator/Clock
11.1.5	General	Purpose	Input/Output
11.1.6	Other	Blocks

11.2	Xilinx	PicoBlaze	Microcontroller
11.2.1	Functional	Blocks	of	PicoBlaze
11.2.2	PicoBlaze	in	Verilog
11.2.3	PicoBlaze	in	VHDL
11.2.4	PicoBlaze	Application	on	the	Basys3	Board

11.3	Xilinx	MicroBlaze	Microcontroller
11.3.1	MicroBlaze	as	an	IP	Block	in	Vivado
11.3.2	 MicroBlaze	 MCS	 Application	 on	 the
Basys3	Board

11.4	Soft-Core	Microcontroller	Applications
11.5	FPGA	Building	Blocks	Used	in	Soft-Core	Microcontrollers
11.6	Summary
11.7	Exercises

12			Digital	Interfacing
12.1	Universal	Asynchronous	Receiver/Transmitter

12.1.1	Working	Principles	of	UART
12.1.2	UART	in	Verilog
12.1.3	UART	in	VHDL
12.1.4	UART	Applications

12.2	Serial	Peripheral	Interface
12.2.1	Working	Principles	of	SPI
12.2.2	SPI	in	Verilog
12.2.3	SPI	in	VHDL
12.2.4	SPI	Application

12.3	Inter-Integrated	Circuit
12.3.1	Working	Principles	of	I2C
12.3.2	I2C	in	Verilog
12.3.3	I2C	in	VHDL
12.3.4	I2C	Application

12.4	Video	Graphics	Array
12.4.1	Working	Principles	of	VGA
12.4.2	VGA	in	Verilog
12.4.3	VGA	in	VHDL
12.4.4	VGA	Application

12.5	Universal	Serial	Bus
12.5.1	USB-Receiving	Module	in	Verilog
12.5.2	USB-Receiving	Module	in	VHDL
12.5.3	USB	Keyboard	Application

12.6	Ethernet
12.7	FPGA	Building	Blocks	Used	in	Digital	Interfacing
12.8	Summary
12.9	Exercises

13			Advanced	Applications
13.1	Integrated	Logic	Analyzer	IP	Core	Usage
13.2	The	XADC	Block	Usage
13.3	Adding	Two	Floating-Point	Numbers
13.4	Calculator
13.5	Home	Alarm	System
13.6	Digital	Safe	System
13.7	Car	Park	Occupied	Slot	Counting	System
13.8	Vending	Machine
13.9	Digital	Clock
13.10	Moving	Wave	via	LEDs
13.11	Translator
13.12	Air	Freshener	Dispenser
13.13	Obstacle-Avoiding	Tank
13.14	Intelligent	Washing	Machine
13.15	Non-Touch	Paper	Towel	Dispenser
13.16	Traffic	Lights
13.17	Car	Parking	Sensor	System
13.18	Body	Weight	Scale
13.19	Intelligent	Billboard
13.20	Elevator	Cabin	Control	System
13.21	Digital	Table	Tennis	Game
13.22	Customer	Counter
13.23	Frequency	Meter
13.24	Pedometer

14			What	Is	Next?
14.1	Vivado	High-Level	Synthesis	Platform
14.2	Developing	a	Project	in	Vivado	HLS	to	Generate	IP
14.3	Using	the	Generated	IP	in	Vivado
14.4	Summary
14.5	Exercises

References
Index

	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	1 Introduction
	1.1 Hardware Description Languages
	1.2 FPGA Boards and Software Tools
	1.3 Topics to Be Covered in the Book

	2 Field-Programmable Gate Arrays
	2.1 A Brief Introduction to Digital Electronics
	2.1.1 Bit Values as Voltage Levels
	2.1.2 Transistor as a Switch
	2.1.3 Logic Gates from Switches

	2.2 FPGA Building Blocks
	2.2.1 Layout of the Xilinx Artix-7 XC7A35T FPGA
	2.2.2 Input/Output Blocks
	2.2.3 Configurable Logic Blocks
	2.2.4 Interconnect Resources
	2.2.5 Block RAM
	2.2.6 DSP Slices
	2.2.7 Clock Management
	2.2.8 The XADC Block
	2.2.9 High-Speed Serial I/O Transceivers
	2.2.10 Peripheral Component Interconnect Express Interface

	2.3 FPGA-Based Digital System Design Philosophy
	2.3.1 How to Think While Using FPGAs
	2.3.2 Advantages and Disadvantages of FPGAs

	2.4 Usage Areas of FPGAs
	2.5 Summary
	2.6 Exercises

	3 Basys3 and Arty FPGA Boards
	3.1 The Basys3 Board
	3.1.1 Powering the Board
	3.1.2 Input/Output
	3.1.3 Configuring the FPGA
	3.1.4 Advanced Connectors
	3.1.5 External Memory
	3.1.6 Oscillator/Clock

	3.2 The Arty Board
	3.2.1 Powering the Board
	3.2.2 Input/Output
	3.2.3 Configuring the FPGA
	3.2.4 Advanced Connectors
	3.2.5 External Memory
	3.2.6 Oscillator/Clock

	3.3 Summary
	3.4 Exercises

	4 The Vivado Design Suite
	4.1 Installation and the Welcome Screen
	4.2 Creating a New Project
	4.2.1 Adding a Verilog File
	4.2.2 Adding a VHDL File

	4.3 Synthesizing the Project
	4.4 Simulating the Project
	4.4.1 Adding a Verilog Testbench File
	4.4.2 Adding a VHDL Testbench File

	4.5 Implementing the Synthesized Project
	4.6 Programming the FPGA
	4.6.1 Adding the Basys3 Board Constraint File to the Project
	4.6.2 Programming the FPGA on the Basys3 Board
	4.6.3 Adding the Arty Board Constraint File to the Project
	4.6.4 Programming the FPGA on the Arty Board

	4.7 Vivado Design Suite IP Management
	4.7.1 Existing IP Blocks in Vivado
	4.7.2 Generating a Custom IP

	4.8 Application on the Vivado Design Suite
	4.9 Summary
	4.10 Exercises

	5 Introduction to Verilog and VHDL
	5.1 Verilog Fundamentals
	5.1.1 Module Representation
	5.1.2 Timing and Delays in Modeling
	5.1.3 Hierarchical Module Representation

	5.2 Testbench Formation in Verilog
	5.2.1 Structure of a Verilog Testbench File
	5.2.2 Displaying Test Results

	5.3 VHDL Fundamentals
	5.3.1 Entity and Architecture Representations
	5.3.2 Dataflow Modeling
	5.3.3 Behavioral Modeling
	5.3.4 Timing and Delays in Modeling
	5.3.5 Hierarchical Structural Representation

	5.4 Testbench Formation in VHDL
	5.4.1 Structure of a VHDL Testbench File
	5.4.2 Displaying Test Results

	5.5 Adding an Existing IP to the Project
	5.5.1 Adding an Existing IP in Verilog
	5.5.2 Adding an Existing IP in VHDL

	5.6 Summary
	5.7 Exercises

	6 Data Types and Operators
	6.1 Number Representations
	6.1.1 Binary Numbers
	6.1.2 Octal Numbers
	6.1.3 Hexadecimal Numbers

	6.2 Negative Numbers
	6.2.1 Signed Bit Representation
	6.2.2 One’s Complement Representation
	6.2.3 Two’s Complement Representation

	6.3 Fixed- and Floating-Point Representations
	6.3.1 Fixed-Point Representation
	6.3.2 Floating-Point Representation

	6.4 ASCII Code
	6.5 Arithmetic Operations on Binary Numbers
	6.5.1 Addition
	6.5.2 Subtraction
	6.5.3 Multiplication
	6.5.4 Division

	6.6 Data Types in Verilog
	6.6.1 Net and Variable Data Types
	6.6.2 Data Values
	6.6.3 Naming a Net or Variable
	6.6.4 Defining Constants and Parameters
	6.6.5 Defining Vectors

	6.7 Operators in Verilog
	6.7.1 Arithmetic Operators
	6.7.2 Concatenation and Replication Operators

	6.8 Data Types in VHDL
	6.8.1 Signal and Variable Data Types
	6.8.2 Data Values
	6.8.3 Naming a Signal or Variable
	6.8.4 Defining Constants
	6.8.5 Defining Arrays

	6.9 Operators in VHDL
	6.9.1 Arithmetic Operators
	6.9.2 Concatenation Operator

	6.10 Application on Data Types and Operators
	6.11 FPGA Building Blocks Used in Data Types and Operators
	6.11.1 Implementation Details of Vector Operations
	6.11.2 Implementation Details of Arithmetic Operations

	6.12 Summary
	6.13 Exercises

	7 Combinational Circuits
	7.1 Basic Definitions
	7.1.1 Binary Variable
	7.1.2 Logic Function
	7.1.3 Truth Table

	7.2 Logic Gates
	7.2.1 The NOT Gate
	7.2.2 The OR Gate
	7.2.3 The AND Gate
	7.2.4 The XOR Gate

	7.3 Combinational Circuit Analysis
	7.3.1 Logic Function Formation between Input and Output
	7.3.2 Boolean Algebra
	7.3.3 Gate-Level Minimization

	7.4 Combinational Circuit Implementation
	7.4.1 Truth Table-Based Implementation
	7.4.2 Implementing One-Input Combinational Circuits
	7.4.3 Implementing Two-Input Combinational Circuits
	7.4.4 Implementing Three-Input Combinational Circuits

	7.5 Combinational Circuit Design
	7.5.1 Analyzing the Problem to Be Solved
	7.5.2 Selecting a Solution Method
	7.5.3 Implementing the Solution

	7.6 Sample Designs
	7.6.1 Home Alarm System
	7.6.2 Digital Safe System
	7.6.3 Car Park Occupied Slot Counting System

	7.7 Applications on Combinational Circuits
	7.7.1 Implementing the Home Alarm System
	7.7.2 Implementing the Digital Safe System
	7.7.3 Implementing the Car Park Occupied Slot Counting System

	7.8 FPGA Building Blocks Used in Combinational Circuits
	7.9 Summary
	7.10 Exercises

	8 Combinational Circuit Blocks
	8.1 Adders
	8.1.1 Half Adder
	8.1.2 Full Adder
	8.1.3 Adders in Verilog
	8.1.4 Adders in VHD

	8.2 Comparators
	8.2.1 Comparators in Verilog
	8.2.2 Comparators in VHDL

	8.3 Decoders
	8.3.1 Decoders in Verilog
	8.3.2 Decoders in VHDL

	8.4 Encoders
	8.4.1 Encoders in Verilog
	8.4.2 Encoders in VHDL

	8.5 Multiplexers
	8.5.1 Multiplexers in Verilog
	8.5.2 Multiplexers in VHDL

	8.6 Parity Generators and Checkers
	8.6.1 Parity Generators
	8.6.2 Parity Checkers
	8.6.3 Parity Generators and Checkers in Verilog
	8.6.4 Parity Generators and Checkers in VHDL

	8.7 Applications on Combinational Circuit Blocks
	8.7.1 Improving the Calculator
	8.7.2 Improving the Home Alarm System
	8.7.3 Improving the Car Park Occupied Slot Counting System

	8.8 FPGA Building Blocks Used in Combinational Circuit Blocks
	8.9 Summary
	8.10 Exercises

	9 Data Storage Elements
	9.1 Latches
	9.1.1 SR Latch
	9.1.2 D Latch
	9.1.3 Latches in Verilog
	9.1.4 Latches in VHDL

	9.2 Flip-Flops
	9.2.1 D Flip-Flop
	9.2.2 JK Flip-Flop
	9.2.3 T Flip-Flop
	9.2.4 Flip-Flops in Verilog
	9.2.5 Flip-Flops in VHDL

	9.3 Register
	9.4 Memory
	9.5 Read-Only Memory
	9.5.1 ROM in Verilog
	9.5.2 ROM in VHDL
	9.5.3 ROM Formation Using IP Blocks

	9.6 Random Access Memory
	9.7 Application on Data Storage Elements
	9.8 FPGA Building Blocks Used in Data Storage Elements
	9.9 Summary
	9.10 Exercises

	10 Sequential Circuits
	10.1 Sequential Circuit Analysis
	10.1.1 Definition of State
	10.1.2 State and Output Equations
	10.1.3 State Table
	10.1.4 State Diagram
	10.1.5 State Representation in Verilog
	10.1.6 State Representation in VHDL

	10.2 Timing in Sequential Circuits
	10.2.1 Synchronous Operation
	10.2.2 Asynchronous Operation

	10.3 Shift Register as a Sequential Circuit
	10.3.1 Shift Registers in Verilog
	10.3.2 Shift Registers in VHDL
	10.3.3 Multiplication and Division Using Shift Registers

	10.4 Counter as a Sequential Circuit
	10.4.1 Synchronous Counter
	10.4.2 Asynchronous Counter
	10.4.3 Counters in Verilog
	10.4.4 Counters in VHDL
	10.4.5 Frequency Division Using Counters

	10.5 Sequential Circuit Design
	10.6 Applications on Sequential Circuits
	10.6.1 Improving the Home Alarm System
	10.6.2 Improving the Digital Safe System
	10.6.3 Improving the Car Park Occupied Slot Counting System
	10.6.4 Vending Machine
	10.6.5 Digital Clock

	10.7 FPGA Building Blocks Used in Sequential Circuits
	10.8 Summary
	10.9 Exercises

	11 Embedding a Soft-Core Microcontroller
	11.1 Building Blocks of a Generic Microcontroller
	11.1.1 Central Processing Unit
	11.1.2 Arithmetic Logic Unit
	11.1.3 Memory
	11.1.4 Oscillator/Clock
	11.1.5 General Purpose Input/Output
	11.1.6 Other Blocks

	11.2 Xilinx PicoBlaze Microcontroller
	11.2.1 Functional Blocks of PicoBlaze
	11.2.2 PicoBlaze in Verilog
	11.2.3 PicoBlaze in VHDL
	11.2.4 PicoBlaze Application on the Basys3 Board

	11.3 Xilinx MicroBlaze Microcontroller
	11.3.1 MicroBlaze as an IP Block in Vivado
	11.3.2 MicroBlaze MCS Application on the Basys3 Board

	11.4 Soft-Core Microcontroller Applications
	11.5 FPGA Building Blocks Used in Soft-Core Microcontrollers
	11.6 Summary
	11.7 Exercises

	12 Digital Interfacing
	12.1 Universal Asynchronous Receiver/Transmitter
	12.1.1 Working Principles of UART
	12.1.2 UART in Verilog
	12.1.3 UART in VHDL
	12.1.4 UART Applications

	12.2 Serial Peripheral Interface
	12.2.1 Working Principles of SPI
	12.2.2 SPI in Verilog
	12.2.3 SPI in VHDL
	12.2.4 SPI Application

	12.3 Inter-Integrated Circuit
	12.3.1 Working Principles of I2C
	12.3.2 I2C in Verilog
	12.3.3 I2C in VHDL
	12.3.4 I2C Application

	12.4 Video Graphics Array
	12.4.1 Working Principles of VGA
	12.4.2 VGA in Verilog
	12.4.3 VGA in VHDL
	12.4.4 VGA Application

	12.5 Universal Serial Bus
	12.5.1 USB-Receiving Module in Verilog
	12.5.2 USB-Receiving Module in VHDL
	12.5.3 USB Keyboard Application

	12.6 Ethernet
	12.7 FPGA Building Blocks Used in Digital Interfacing
	12.8 Summary
	12.9 Exercises

	13 Advanced Applications
	13.1 Integrated Logic Analyzer IP Core Usage
	13.2 The XADC Block Usage
	13.3 Adding Two Floating-Point Numbers
	13.4 Calculator
	13.5 Home Alarm System
	13.6 Digital Safe System
	13.7 Car Park Occupied Slot Counting System
	13.8 Vending Machine
	13.9 Digital Clock
	13.10 Moving Wave via LEDs
	13.11 Translator
	13.12 Air Freshener Dispenser
	13.13 Obstacle-Avoiding Tank
	13.14 Intelligent Washing Machine
	13.15 Non-Touch Paper Towel Dispenser
	13.16 Traffic Lights
	13.17 Car Parking Sensor System
	13.18 Body Weight Scale
	13.19 Intelligent Billboard
	13.20 Elevator Cabin Control System
	13.21 Digital Table Tennis Game
	13.22 Customer Counter
	13.23 Frequency Meter
	13.24 Pedometer

	14 What Is Next?
	14.1 Vivado High-Level Synthesis Platform
	14.2 Developing a Project in Vivado HLS to Generate IP
	14.3 Using the Generated IP in Vivado
	14.4 Summary
	14.5 Exercises

	References
	Index

